173
Views
8
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Effect of magnetic field on donor impurity-related photoionisation cross-section in multilayered quantum dot

ORCID Icon, ORCID Icon & ORCID Icon
Pages 2614-2633 | Received 24 Mar 2021, Accepted 06 Sep 2021, Published online: 26 Sep 2021

References

  • X. Wang, H. Li, and G. Chen, Core–shell nanoparticles for cancer imaging and therapy. in Core–Shell Nanostructures for Drug Delivery and Theranostics, Elsevier, Ámsterdam, 2018, pp. 143–175. p. 466.
  • C. Yan, X. Du, J. Li, X. Ding, Z. Li, and Y. Tang, Effect of excitation wavelength on optical performances of quantum-dot-converted light-emitting diode, Nanomaterials-Basel 9 (2019), pp. 1100. (13pp).
  • M.F. Frasco and N. Chaniotakis, Semiconductor quantum dots in chemical sensors and biosensors, Sensors 9 (2009), pp. 7266–7286.
  • G.S. Selopal, H. Zhao, Z.M. Wang, and F. Rosei, Core/shell quantum dots solar cells, Adv. Funct. Mater. 30 (2020), pp. 1908762. (21pp).
  • D. Vasudevan, R.R. Gaddam, A. Trinchi, and I. Cole, Core–shell quantum dots: properties and applications, J. Alloy. Compd. 636 (2015), pp. 395–404.
  • J.-H. Yuan, W.-F. Xie, and L.-L. He, Shallow donor impurity ground state in a GaAs/AlAs spherical quantum dot within an electric field, Commun. Theor. Phys. 52 (2009), pp. 710–714.
  • W. Xie, Impurity effects on optical property of a spherical quantum dot in the presence of an electric field, Physica B 405 (2010), pp. 3436–3440.
  • E. Sadeghi, Electric field and impurity effects on optical property of a three-dimensional quantum dot: a combinational potential scheme, Superlattice Microst. 50 (2011), pp. 331–339.
  • C. Dane, H. Akbas, A. Guleroglu, S. Minez, and K. Kasapoglu, The hydrostatic pressure and electric field effects on the normalized binding energy of hydrogenic impurity in a GaAs/AlAs spherical quantum dot, Physica E 44 (2011), pp. 186–189.
  • L.M. Burileanu, Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields, J. Lumin. 145 (2014), pp. 684–689.
  • A. Corella-Madueño, R. Rosas, J.L. Marín, and R. Riera, Hydrogenic impurities in spherical quantum dots in a magnetic field, J. Appl. Phys. 90 (2001), pp. 2333–2337.
  • E. Feddi, A. Talbi, M.E. Mora-Ramos, M. El Haouari, F. Dujardin, and C.A. Duque, Linear and nonlinear magneto-optical properties of an off-center single dopant in a spherical core/shell quantum dot, Physica B 524 (2017), pp. 64–70.
  • M.G. Barseghyan, A.A. Kirakosyan, and C.A. Duque, Donor-impurity related binding energy and photoionization cross-section in quantum dots: electric and magnetic fields and hydrostatic pressure effects, Eur. Phys. J. B 72 (2009), pp. 521–529.
  • C.A. Duque, N. Porras-Montenegro, Z. Barticevic, M. Pacheco, and L.E. Oliveira, Electron-hole transitions in self-assembled InAs/GaAs quantum dots: effects of applied magnetic fields and hydrostatic pressure, Microelectronics. J. 36 (2005), pp. 231–233.
  • S. Li, L. Shi, and Z.-W. Yan, Binding energies and photoionization cross-sections of donor impurities in GaN/Al xGa 1−xN spherical quantum dot under hydrostatic pressure, Mod. Phys. Lett. B 34 (2020), pp. 2050153. (13pp).
  • B. Çakir, Ü. Atav, Y. Yakar, and A. Özmen, Calculation of Zeeman splitting and Zeeman transition energies of spherical quantum dot in uniform magnetic field, Chem. Phys. 475 (2016), pp. 61–68.
  • D.-M. Liu and W.-F. Xie, Binding energy of an off-center D − in a spherical quantum dot, Commun. Theor. Phys. 51 (2009), pp. 919–922.
  • E.B. Al, E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sökmen, and C.A. Duque, Binding energies and optical absorption of donor impurities in spherical quantum dot under applied magnetic field, Physica E 119 (2020), pp. 114011. (8pp).
  • V.I. Boichuk, I.V. Bilynskyi, R.Y. Leshko, and L.M. Turyanska, The effect of the polarization charges on the optical properties of a spherical quantum dot with an off-central hydrogenic impurity, Physica E. 44 (2011), pp. 476–482.
  • V.A. Holovatsky, M.Y. Yakhnevych, and O.M. Voitsekhivska, Optical properties of GaAs/Al xGa 1−xAs/GaAs quantum dot with off-central impurity driven by electric field, Condens. Matter Phys. 21 (2018), pp. 13703. (9pp).
  • V.A. Holovatsky, I.B. Bernik, and M.Y. Yakhnevych, Effect of magnetic field on energy spectrum and localization of electron in CdS/HgS/CdS/HgS/CdS multilayered spherical nanostructure, Physica B508 (2017), pp. 112–117.
  • V.A. Holovatsky, O.M. Voitsekhivska, and M.Y. Yakhnevych, The effect of magnetic field and donor impurity on electron spectrum in spherical core-shell quantum dot, Superlattice Microst. 116 (2018), pp. 9–16.
  • V. Holovatsky, M. Chubrey, and O. Voitsekhivska, Effect of electric field on photoionisation cross-section of impurity in multilayered quantum dot, Superlattice Microst. 145 (2020), pp. 106642–(9pp) https://doi.org/https://doi.org/10.1016/j.physe.2017.06.019.
  • C.Y. Lin and Y.K. Ho, Photoionization cross sections of hydrogen impurities in spherical quantum dots using the finite-element discrete-variable representation, Phys. Rev. A 84 (2011), pp. 023407. (9pp).
  • C. Heyn and C.A. Duque, Donor impurity related optical and electronic properties of cylindrical GaAs-Al xGa 1−xAs quantum dots under tilted electric and magnetic fields, Sci. Rep. 10 (2020), pp. 9155. (18pp).
  • A.A. Gusev, O. Chuluunbaatar, S.I. Vinitsky, V.L. Derbov, L.L. Hai, E.M. Kazaryan, and H.A. Sarkisyan, Finite element method for calculating spectral and optical characteristics of axially symmetric quantum dots, Proc. SPIE 10717 (2018), pp. 1071712. (6pp).
  • J.A. Osorio, D. Caicedo-Paredes, J.A. Vinasco, A.L. Morales, A. Radu, R.L. Restrepo, J.C. Martínez-Orozco, A. Tiutiunnyk, D. Laroze, N.N. Hieu, H.V. Phuc, M.E. Mora-Ramos, and C.A. Duque, Pyramidal core-shell quantum dot under applied electric and magnetic fields, Sci. Rep. 10 (2020), pp. 8961. (14pp).
  • S. Wu and L. Wan, Electronic structures in a CdSe spherical quantum dot in a magnetic field: diagonalization method and variational method. J. Appl. Phys. 111 (2012), pp. 063711. (10pp).
  • V. Holovatsky, O. Voitsekhivska, and I. Bernik, Effect of magnetic field on electron spectrum in spherical nano-structures, Condens. Matter Phys. 17 (2014), pp. 13702. (8pp).
  • A. Baydin, T. Makihara, N.M. Pecara, and J. Kono, Time-domain terahertz spectroscopy in high magnetic fields, Front. Optoelectron. 14 (2021), pp. 110–129.
  • V. Holovatsky, O.M. Voitsekhivska and M.Y. Yakhnevych, Effect of magnetic field on an electronic structure and intraband quantum transitions in multishell quantum dots, Physica E 93 (2017), pp. 295–300.
  • J.A. Vinasco, A. Radu, and C.A. Duque, Propiedades electrónicas de un anillo cuántico elíptico con sección transversal rectangular, Revista EIA 16 (2019), pp. 77–87.
  • J.A. Vinasco, A. Radu, E. Kasapoglu, R.L. Restrepo, A.L. Morales, E. Feddi, M.E. Mora-Ramos, and C.A. Duque, Effects of geometry on the electronic properties of semiconductor elliptical quantum rings, Sci. Rep. 8 (2018), pp. 13299. (pp15).
  • J.A. Vinasco, A. Radu, E. Niculescu, M.E. Mora-Ramos, E. Feddi, V. Tulupenko, R.L. Restrepo, E. Kasapoglu, A.L. Morales, and C.A. Duque, Electronic states in GaAs-(Al,Ga)As eccentric quantum rings under nonresonant intense laser and magnetic fields, Sci. Rep. 9 (2019), pp. 1427. (pp17).
  • J.A. Vinasco, A. Radu, R.L. Restrepo, A.L. Morales, M.E. Mora-Ramos, and C.A. Duque, Magnetic field effects on intraband transitions in elliptically polarized laser-dressed quantum rings, Opt. Mater.91 (2019), pp. 309–320.
  • COMSOL Multiphysics, v. 5.4. COMSOL AB, Stockholm, Sweden.
  • COMSOL Multiphysics Reference Guide, Stockholm, Sweden, May 2012.
  • COMSOL Multiphysics Users Guide, Stockholm, Sweden, May 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.