100
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Signature Of stiffness transition in electrical behaviour of Se-Te-Sn-Ge glassy alloys

, &
Pages 2528-2540 | Received 24 May 2021, Accepted 18 Sep 2021, Published online: 06 Oct 2021

References

  • A. Acharya, K. Bhattacharya, C.K. Ghosh, A.N. Biswas and S. Bhattacharya, Charge carrier transport and electrochemical stability of Li2O doped glassy ceramics. Mater. Sci. & Eng. B 260 (2020), pp. 114612.
  • R. Kundu, D. Roy and S. Bhattacharya, Microstructure, electrical conductivity and modulus spectra of CdI2 doped nanocomposite-electrolytes. Physica B: Conden. Matt. 507 (2017), pp. 107.
  • S. Ojha, M. Roy, A. Chamuah, K. Bhattacharya and S. Bhattacharya, Transport phenomena of Cu–S–Te chalcogenide nanocomposites: frequency response and AC conductivity. Phys. Chem. Chem. Phys. 22 (2020), pp. 24600–24613.
  • S. Bhattacharya, AC conductivity behaviour and charge carrier concentrations of some vanadate glassy system. Phys. Lett. A 384 (2020), pp. 126324.
  • S. Ojha, M. Roy, A. Chamuah, K. Bhattacharya and S. Bhattacharya, Electrical transport of chalcogenide glassy system: interpretation by hunt’s model and microstructure. SN Appl. Sci. 2 (2020), pp. 838.
  • S. Srivastava, N. Mehta, R.K. Shukla and A. Kumar, Effect of Zn incorporation on the a.c. conductivity of glassy Se70Te30 alloy. The Euro. Phys. J. Appl. Phys. 44 (2008), pp. 217–221.
  • N. Chandel, N. Mehta and A. Kumar, Study of thermally activated a.c. conduction in a-Se80Te20and a-Se80Te19.5M0.5(M = Cd, In, Sb) alloy. Sol. Stat. Sci. 13 (2011), pp. 257–262.
  • N. Chandel, N. Mehta and A. Kumar, Investigation of a.c. conductivity measurements in a-Se80Te20 and a-Se80Te10M10 (M = Cd, In, Sb) alloys using correlated barrier hopping model. Current Appl. Phys. 12 (2012), pp. 405–412.
  • A. Sharma and N. Mehta, Estimation of density of defect states in glassy Se80-xTe20Snx alloys using a.c. conductivity measurements. Phys. Scripta 84 (2011), pp. 015605.
  • N.A. Hegab, M. Fadel, I.S. Yahia, A.M. Salem and A.S. Farid, Electrical conductivity and dielectric properties of Se85Te15-xSbx (x = 0 at.%, 2 at.%, 4 at.%, and 6 at.%) thin films. J. Electron. Mater. 42 (2013), pp. 3397–3407.
  • M.M. El-Nahass, A.F. El-Deeb, H.E.A. El-Sayed and A.M. Hassanien, Electrical conductivity and dielectric properties of bulk glass Se55Ge30As15 chalcogenide. Phys. B 388 (2007), pp. 26–33.
  • E.A. Davis and N.F. Mott, Conduction in non-crystalline systems V. conductivity, optical absorption and photoconductivity in amorphous semiconductors. Phil. Mag. 22 (1970), pp. 903–922.
  • M. Kastner, D. Adlert and H. Fritzsche, Valence-Alternation model for localized Gap states in lone-pair semiconductors. Phys. Rev. Lett. 37 (1976), pp. 1504–1507.
  • S.R. Elliott, A theory of a.c. conduction in chalcogenide glasses. Phil. Mag. 36 (1977), pp. 1291–1304.
  • S.R. Elliott, Temperature dependence of a.c. conductivity of chalcogenide glasses. Phil. Mag. B 37 (1978), pp. 553–560.
  • S.R. Elliott, The mechanism for a.c. conduction in chalcogenide semiconductors: Electronic or atomic? Phil. Mag. B 40 (1979), pp. 507–511.
  • S. Bhattacharya, Metal Oxide Glass Nanocomposites, Elsevier, Amsterdam, Netherlands, 2020, pp. 27–35.
  • S.K. Pal, A. Kumar and N. Mehta, Signature of rigidity percolation effect on dielectric behavior of germanium containing multi-component chalcogenide glasses (ChGs). Ceram. Internat. 45 (2019), pp. 16279–16287.
  • P.K. Singh, S.K. Sharma, S.K. Tripathi and D.K. Dwivedi, Study of dielectric relaxation and thermally activated a.c. conduction in multicomponent Ge10−xSe60Te30Inx (0 ≤ x ≤ 6) chalcogenide glasses using CBH model. Results Phys. 12 (2019), pp. 223–236.
  • J. Sharma and S. Kumar, Effect of impurity (Sb and Ag) incorporation on the a.c. conductivity and dielectric properties of a-Se70Te30 glassy alloy. Physica B 407 (2012), pp. 457–463.
  • C. Dohare, M.M.A. Imran and N. Mehta, Study of dielectric relaxation and thermally activated a.c. conduction in glassy Se70Te30 and Se70Te28M2 (M = Ag, Zn and Cd) alloys. J. Asian Ceram. Soc. 4 (2016), pp. 252–258.
  • S.K. Sharma, R.K. Shukla and A. Kumar, A.C. conduction in glassy alloys of Se90Sb10-xAgx. Physica B 481 (2016), pp. 144–147.
  • N. Mehta, D. Kumar and A. Kumar, Compensation effect for a.c. conduction in Se80Te20 and Se80Te10M10 (M = Cd, In, Sb) chalcogenide glasses. Ind. J. Pure Appl. Phys. 44 (2006), pp. 935–938.
  • N. Mehta, S. Kumar and A. Kumar, A.C. conduction in glassy Se70Te30-xSbx alloys: observation of Meyer-Neldel rule. The Euro. Phys. J. Appl. Phys. 37 (2007), pp. 123–128.
  • N. Mehta, D. Kumar and A. Kumar, AC conduction in glassy Se68Ge22Cd10 alloy: observation of MN rule. Mater. Lett. 61 (2007), pp. 3167–3170.
  • V.S. Gurin, O. Shpotyuk and V. Boyko, A simulation of the cluster structures in Ge-Se vitreous chalcogenide semiconductors. physics, chemistry and applications of nanostructures, (Proceedings of international conference nano meeting), Minsk, Belarus, 2013, pp. 158–161.
  • M.T.M. Shatnawi, Reverse monte carlo modeling of the rigidity percolation threshold in GexSe1-x glassy networks. New J. Glass Ceramics 5 (2015), pp. 31–43.
  • W. Wang, D. Mei, F. Liang, J. Zhao, Y. Wu and Z. Lin, Inherent laws between tetrahedral arrangement pattern and optical performance in tetrahedron-based mid-infrared nonlinear optical materials. Coord. Chem. Rev. 421 (2020), pp. 213444.
  • S.K. Pal, N. Chandel and N. Mehta, Synthesis and thermal characterization of novel phase change materials (PCMs) of Se-Te-Sn-Ge (STSG) multi-component system: calorimetric studies of glass/crystal phase transition. Dalton Trans. 48 (2019), pp. 4719–4729.
  • S.K. Pal, A. Srivastava and N. Mehta, Studies of high field conduction and resistive switching in Se78-xTe20Sn2Gex (0 ≤ x ≤ 6) bulk glasses using current-voltage characteristics. J. Alloys Comp. 806 (2019), pp. 660–667.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.