1,166
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Micropolar continua as projective space of Skyrmions

ORCID Icon
Pages 26-59 | Received 28 Jun 2021, Accepted 17 Sep 2021, Published online: 04 Oct 2021

References

  • E. Cosserat and F. Cosserat, Théorie des corps déformables. Librairie Scientifique A, Hermann et Fils, 1909.
  • A.C. Eringen and E.S. Suhubi, Nonlinear theory of simple microelastic solids I, Int. J. Eng. Sci 2 (1964), pp. 189–204.
  • A.C. Eringen and E.S. Suhubi, Nonlinear theory of simple microelastic solids II, Int. J. Eng. Sci 2 (1964), pp. 389–404.
  • A.C. Eringen, Microcontinuum Field Theories: I. Foundations and Solids, Springer, New York, 1999.
  • C.G. Böhmer, Y. Lee, and P. Neff, Soliton solutions in geometrically nonlinear Cosserat micropolar elasticity with large deformations, Wave Motion 84 (2019), pp. 110–124.
  • P.B. Burt, Exact, multiple soliton solutions of the double sine Gordon equation, Proc. R. Soc. Lond. A. 359 (1978), pp. 479–495.
  • K. Kondo, On the analytical and physical foundations of the theory of dislocations and yielding by the differential geometry of continua, Int. J. Eng. Sci. 2(3) (1964), pp. 219–251.
  • R. deWit, Relation between dislocations and disclinations, J. Appl. Phys. 42(9) (1971), pp. 3304–3308.
  • M. Kléman, Relationship between Burgers circuit, Volterra process and homotopy groups, J. Phys. Lett. 38(10) (1977), pp. 199–202.
  • M. Kléman, Defects in liquid crystals, Rep. Prog. Phys. 52(5) (1989), pp. 555–654.
  • É. Cartan, Sur une classe remarquable d'espaces de Riemann, Bull. Soc. Math. France 54 (1926), pp. 214–264.
  • R. Utiyama, Invariant theoretical interpretation of interaction, Phys. Rev. 101(5) (1956), pp. 1597.
  • T.W.B. Kibble, Lorentz invariance and the gravitational field, J. Math. Phys. 2(2) (1961), pp. 212–221.
  • S. Deser and B. Zumino, Consistent supergravity, Phys. Lett. B 62(3) (1976), pp. 335–337.
  • F.W. Hehl, P. Von Der Heyde, G.D. Kerlick, and J.M. Nester, General relativity with spin and torsion: Foundations and prospects, Rev. Mod. Phys. 48 (1976), pp. 393–416.
  • S. Hojman, M. Rosenbaum, M.P. Ryan, and L.C. Shepley, Gauge invariance, minimal coupling, and torsion, Phys. Rev. D 17(12) (1978), pp. 3141.
  • H. Kleinert, Gravity as a theory of defects in a crystal with only second gradient elasticity, Ann. Phys. 499(2) (1987), pp. 117–119.
  • M.O. Katanaev and I.V. Volovich, Theory of defects in solids and three-dimensional gravity, Ann. Phys. 216(1) (1992), pp. 1–28.
  • F.W. Hehl and Y.N. Obukhov, Élie Cartan's torsion in geometry and in field theory, an essay, Ann. Fond. Broglie 32 (2007), pp. 157–194.
  • A. Yavari and A. Goriely, Riemann-Cartan geometry of nonlinear dislocation mechanics, Arch. Ration. Mech. Anal. 205(1) (2012), pp. 59–118.
  • A. Yavari and A. Goriely, Weyl geometry and the nonlinear mechanics of distributed point defects, Proc. Phys. Soc. A 468(2148) (2012), pp. 3902–3922.
  • A. Yavari and A. Goriely, Riemann-Cartan geometry of nonlinear disclination mechanics, Math. Mech. Solids 18(1) (2013), pp. 91–102.
  • A. Yavari, Compatibility equations of nonlinear elasticity for non-simply-connected bodies, Arch. Ration. Mech. Anal. 209(1) (2013), pp. 237–253.
  • H. Kleinert, Towards a unified field theory of defects and stresses, Lett. Nuovo Cimento 35(2) (1982), pp. 41–45.
  • C.G. Böhmer, R.J. Downes, and D. Vassiliev, Rotational elasticity, Q. J. Mech. Appl. Math. 64(4) (2011), pp. 415–439.
  • P. Neff, M. Bîrsan, and F. Osterbrink, Existence theorem for geometrically nonlinear Cosserat micropolar model under uniform convexity requirements, J. Elast. 121(1) (2015), pp. 119–141.
  • C.G. Böhmer and Y. Lee, Compatibility conditions of continua using Riemann-Cartan geometry, Math. Mech. Solids 26 (2020), pp. 513–529.
  • C. Vallée, Compatibility equations for large deformations, Int. J. Eng. Sci. 30(12) (1992), pp. 1753–1757.
  • B.A. Bilby, R. Bullough, and E. Smith, Continuous distributions of dislocations: a new application of the methods of non-Riemannian geometry, Proc. R. Soc. Lond. A 231(1185) (1955), pp. 263–273.
  • K. Kondo, Non-Riemannian and Finslerian approaches to the theory of yielding, Int. J. Eng. Sci. 1(1) (1963), pp. 71–88.
  • S.K. Godunov and E.I. Romenskii, Nonstationary equations of nonlinear elasticity theory in Eulerian coordinates, J. Appl. Mech. Tech. Phys. 13(6) (1972), pp. 868–884.
  • E. Kröner, Continuum theory of defects, in Physics of Defects (Les Houches, Session 35), R. Balian et al., eds., North-Holland, Amsterdam, 1980.
  • H. Kleinert, Gauge Fields in Condensed Matter Vol. 2: Stresses and Defects (Differential Geometry, Crystal Melting), World Scientific, Singapore, 1989.
  • S.K. Godunov and E. Romenskii, Elements of Continuum Mechanics and Conservation Laws, Kluwer Academic/Plenum Publishers, New York, 2003.
  • J.F. Nye, Some geometrical relations in dislocated crystals, Acta Metal. 1(2) (1953), pp. 153–162.
  • A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
  • G. Toulouse and M. Kléman, Principles of a classification of defects in ordered media, J. Phys. Lett. 37(6) (1976), pp. 149–151.
  • N.D. Mermin, The topological theory of defects in ordered media, Rev. Mod. Phys. 51(3) (1979), pp. 591.
  • M.V. Kurik and O.D. Lavrentovich, Defects in liquid crystals: homotopy theory and experimental studies, Physics-Uspekhi 31(3) (1988), pp. 196–224.
  • J.P. Sethna, Order parameters, broken symmetry, and topology. arXiv preprint cond-mat/9204009, 1992.
  • A. Unzicker, Topological defects in an elastic medium: A valid model particle physics. Structured media, Proceedings of the International Symposium, in memory of E. Kröner, Poznań, B. T. Maruszewski, eds., September 16-21 2001, House Poznań University of Technology, 2002, pp. 293–311.
  • M. Kleman and O.D. Lavrentovich, Topological point defects in nematic liquid crystals, Philos. Mag.86(25–26) (2006), pp. 4117–4137.
  • G. Acquaviva, A. Iorio, and L. Smaldone, Topologically inequivalent quantizations. arXiv preprint arXiv:2012.09929, 2020.
  • L.D. Landau and E.M. Lifshitz, Theory of Elasticity: Vol. 7 of Course of Theoretical Physics, Elsevier, New York, 1986.
  • G.P. Alexander, B.G. Chen, E.A. Matsumoto, and R.D. Kamien, Disclination loops, hedgehogs, and all that, Rev. Mod. Phys. 84(2) (2012), pp. 497.
  • J.R. Munkres, Topology, Prentice Hall, Inc., Upper Saddle River, NJ, 2000.
  • A. Iorio and P. Pais, (Anti-)de Sitter, Poincaré, Super symmetries, and the two Dirac points of graphene, Ann. Phys. 398 (2018), pp. 265–286.
  • E.J. Weinberg and A.H. Guth, Nonexistence of spherically symmetric monopoles with multiple magnetic charge, Phys. Rev. D 14(6) (1976), pp. 1660.
  • H. Weigel, B. Schwesinger, and G. Holzwarth, Exotic baryon number B = 2 states in the SU (2) skyrme model, Phys. Lett. B 168(4) (1986), pp. 321–325.
  • A.M. Polyakov, Particle spectrum in the quantum field theory, JETP Lett. 20 (1974), pp. 194–195.
  • A.A. Belavin and A.M. Polyakov, Metastable states of two-dimensional isotropic ferromagnets, JETP Lett. 22(10) (1975), pp. 245–248.
  • L.D. Faddeev, Some comments on the many-dimensional solitons, Lett. Math. Phys. 1(4) (1976), pp. 289–293.
  • S. Coleman, There are no classical glueballs, Commun. Math. Phys. 55(2) (1977), pp. 113–116.
  • J. Arafune, P.G.O. Freund, and C.J. Goebel, Topology of Higgs fields, J. Math. Phys. 16(2) (1975), pp. 433–437.
  • G. 't Hooft, Magnetic monopoles in unified theories, Nucl. Phys. B 79(CERN-TH-1876) (1974), pp. 276–284.
  • M.K. Prasad and C.M. Sommerfield, Exact classical solution for the't Hooft monopole and the Julia-Zee dyon, Phys. Rev. Lett. 35(12) (1975), p. 760.
  • G. Capriz, Continua with Microstructure, Vol. 35, Springer-Verlag, New York, 1989.
  • R. Shankar, Applications of topology to the study of ordered systems, J. Phys. 38(11) (1977), pp. 1405–1412.
  • A.C. Eringen, An assessment of director and micropolar theories of liquid crystals, Int. J. Eng. Sci31(4) (1993), pp. 605–616.
  • T.H.R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962), pp. 556–569.
  • R. Penrose, A spinor approach to general relativity, Ann. Phys. 10(2) (1960), pp. 171–201.
  • E. Newman and R. Penrose, An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys. 3(3) (1962), pp. 566–578.
  • H.J. Bernstein and A.V. Phillips, Fiber bundles and quantum theory, Sci. Am.245(1) (1981), pp. 122–137.
  • D. Finkelstein, Kinks, J. Math. Phys. 7(7) (1966), pp. 1218–1225.
  • H.J. Bernstein, Spin precession during interferometry of fermions and the phase factor associated with rotations through 2π radians, Phys. Rev. Lett. 18(24) (1967), pp. 1102.
  • Y. Aharonov and L. Susskind, Observability of the sign change of spinors under 2π rotations, Phys. Rev. 158(5) (1967), pp. 1237.
  • D. Finkelstein and J. Rubinstein, Connection between spin, statistics, and kinks, J. Math. Phys.9(11) (1968), pp. 1762–1779.
  • S. Coleman, Aspects of Symmetry: Selected Erice Lectures, Cambridge University Press, Cambridge, 1988.
  • T.H.R. Skyrme, A non-linear theory of strong interactions, Proc. R. Soc. Lond. A 247(260) (1958), pp. 260–278.
  • T.H.R. Skyrme, A unified model of K- and π-mesons, Proc. Roy. Soc. Lond. A 252(1269) (1959), pp. 236–245.
  • T.H.R. Skyrme, A non-linear field theory, Proc. Roy. Soc. Lond. A 260 (1961), pp. 127–138.
  • T.H.R. Skyrme, Particle states of a quantized meson field, Proc. Roy. Soc. Lond. A 262(1309) (1961), pp. 237–245.
  • H.-R. Trebin, Elastic energies of a directional medium, J. Phys. 42(11) (1981), pp. 1573–1576.
  • H.-R. Trebin, The topology of non-uniform media in condensed matter physics, Adv. Phys. 31(3) (1982), pp. 195–254.
  • C.G. Böhmer and Y.N. Obukhov, A gauge-theoretic approach to elasticity with microrotations, Proc. R. Soc. A 468(2012), pp.1391–1407.
  • Cz. Rymarz, More about the relations between the Ericksen-Leslie-Parodi and Eringen-Lee theories of nematic liquid crystals, Int. J. Eng. Sci. 28(1) (1990), pp. 11–21.
  • C.G. Böhmer, Y. Lee, and P. Neff, Chirality in the plane, J. Mech. Phys. Solids 134 (2020), p. 103753.