236
Views
4
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

DFT aspects of the elastic, mechanical, magnetic, thermodynamic and optical properties of Ce3XY perovskites

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 244-263 | Received 04 Jul 2021, Accepted 22 Sep 2021, Published online: 19 Oct 2021

References

  • A.S. Verma and V.K. Jindal, Lattice constant of cubic perovskites. J. Alloys Compd 485 (2009), pp. 514–518.
  • S. Kacimi, D. Mekam, M. Djermouni, M. Azzouz, A. Hallouche and A. Zaoui, Electronic structure and magnetism in ternary gadolinium-based cubic inverse perovskites. Mater. Sci. Semicond. Process 16 (2013), pp. 1971–1976.
  • S. Berri, D. Maouche and Y. Medkour, Ab initio study of the structural, electronic and elastic properties of AgSbTe2, AgSbSe2, Pr3AlC, Ce3AlC, Ce3AlN, La3AlC and La3AlN compounds. Physica B Condens. Matter 407 (2012), pp. 3320–3327.
  • M. Kosaka, Y. Uwatoko, T. Seino and H. Onodera, Magnetic properties of Ce3TX compounds (T = Al, In, Sn and Pb; X = C and B). Physica B Condens. Matter 281–282 (2000), pp. 114–115.
  • F. Gäbler, W. Schnelle, A. Senyshyn and R. Niewa, Magnetic structure of the inverse perovskite (Ce3N)In. Solid State Sci 10 (2008), pp. 1910–1915.
  • A.H. Reshak, Spin-polarized second harmonic generation from the antiferromagnetic CaCoSO single crystal. Sci Rep 7 (2017), pp. 1–8.
  • A.H. Reshak, Ab initio study of TaON, an active photocatalyst under visible light irradiation. Phys. Chem. Chem. Phys 16 (2014), pp. 10558–10565.
  • G.E. Davydyuk, O.Y. Khyzhun, A.H. Reshak, H. Kamarudin, G.L. Myronchuk, S.P. Danylchuk, A.O. Fedorchuk, L.V. Piskach, M. Yu. Mozolyuk and O.V. Parasyuk, Photoelectrical properties and the electronic structure of Tl1−xIn1−xSnxSe2 (x = 0, 0.1, 0.2, 0.25) single crystalline alloys. Phys. Chem. Chem. Phys 15 (2013), pp. 6965–6972.
  • A.H. Reshak, Y.M. Kogut, A.O. Fedorchuk, O.V. Zamuruyeva, G.L. Myronchuk, O.V. Parasyuk, H. Kamarudin, S. Auluck, K.J. Plucinski and J. Bila, Linear, non-linear optical susceptibilities and the hyperpolarizability of the mixed crystals Ag0.5Pb1.75Ge(S1−xSex)4: experiment and theory. Phys. Chem. Chem. Phys 15 (2013), pp. 18979–18986.
  • A.H. Reshak, D. Stys, S. Auluck and I.V. Kityk, Dispersion of linear and nonlinear optical susceptibilities and the hyperpolarizability of 3-methyl-4-phenyl-5-(2-pyridyl)-1,2,4-triazole. Phys. Chem. Chem. Phys 13 (2011), pp. 2945–2952.
  • A.H. Reshak, Fe2MnSiGe1−x: influence thermoelectric properties of varying the germanium content. RSC Adv 4 (2014), pp. 39565–39571.
  • A.H. Reshak, Thermoelectric properties for AA- and AB-stacking of a carbon nitride polymorph (C3N4). RSC Adv 4 (2014), pp. 63137–63142.
  • S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I.J. Probert, K. Refson and M.C. Payne, First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater 220 (2005), pp. 567–570.
  • M. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J .Hasnip, S. J. Clark and M. C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14 (2002), pp. 2717–2744.
  • P. Hasnip, K. Refson, M. I. J. Probert, J. R. Yates, S. J. Clark and C. J. Pickard, Density functional theory in the solid state. Phil. Trans. R. Soc. A 372 (2014), pp. 20130270.
  • N. Woods, M. C. Payne and P. J. Hasnip, Computing the self-consistent field in Kohn Sham density functional theory. J. Phys.: Condens. Matter 31 (2019), pp. 453001.
  • J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865–3868.
  • J. P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 78 (1997), pp. 1396.
  • Y. Zhang and W. Yang, Comment on generalized gradient approximation made simple. Phys. Rev. Lett 80 (1998), pp.890.
  • H. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188–5192.
  • C.G. Broyden, The convergence of a class of double-rank minimization algorithms 1. General considerations. IMA J. Appl. Math 6 (1970), pp. 76–90.
  • R. Fletcher, A new approach to variable metric algorithms. Comput. J 13 (1970), pp. 317–322.
  • D. Goldfarb, A family of variable-metric methods derived by variational means. Math. Comp 24 (1970), pp. 23–26.
  • D. Shanno, Conditioning of quasi-newton methods for function minimization. Math. Comp 24 (1970), pp. 647–656.
  • M. Güler, Ş Uğur, G. Uğur and E. Güler, First principles study of elastic and mechanical properties of TlBr and TlCl compounds. J. Mol. Struct 1200 (2020), pp. 127150.
  • E. Güler and M. Güler, Elastic and mechanical properties of cubic diamond under pressure. Chin. J. Phys 53(2) (2015), pp. 040807.
  • E. Güler and M. Güler, A theoretical investigation of the effect of pressure on the structural, elastic and mechanical properties of ZnS crystals. Braz. J. Phys 45 (2015), pp. 296–301.
  • M. Güler and E. Güler, Elastic and related properties of Si under hydrostatic pressure calculated using modified embedded atom method. Mater. Res. Express 3 (2016), pp. 075901.
  • E. Güler and M. Güler, Phase transition and elasticity of gallium arsenide under pressure. Mat. Res 17(5) (2014), pp. 1268–1272.
  • M. Güler and E. Güler, Embedded atom method-based geometry optimization aspects of body-centered cubic metals. Chin. Phys. Lett 30(5) (2013), pp. 056201.
  • E. Güler and M. Güler, Theoretical prediction of the structural, elastic, mechanical and phonon properties of bismuth telluride under pressure. Int. J. Mod. Phys. B 29 (2015), pp. 1550222.
  • E. Güler and M. Güler, Elastic and mechanical properties of hexagonal diamond under pressure. Appl. Phys. A 119 (2015), pp. 721–726.
  • E. Güler and M. Güler, High pressure phase transition and elastic behavior of europium oxide. J. Optoelectron. Adv. Mater 16 (2014), pp. 1322–1327.
  • A. Benghia, T. Dahame and B. Bentria, First principle calculation of physical properties of barium based chalcogenides BaM4S7 (M = Ga, Al); a DFT, DFT-D and hybrid functional HSE06 study. Opt. Mater 54 (2016), pp. 269–275.
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett 101 (2008), pp. 055504.
  • M. Liao, Y. Liu, L. Min, Z. Lai, T. Han, D. Yang and J. Zhu, Alloying effect on phase stability, elastic and thermodynamic properties of Nb-Ti-V-Zr high entropy alloy. Intermetallics 101 (2018), pp. 152–164.
  • M. J. Peng, Y. H. Duan and Y. Sun, Anisotropic elastic properties and electronic structure of Sr-Pb compounds. Comput. Mater. Sci 98 (2015), pp. 311–319.
  • J. Goldsby, S. Raj, S. Guruswamy and D.D. Azbill, First-principle and experimental study of a gadolinium-praseodymium-cobalt pseudobinary intermetallic compound. J. Mater 2015(12) (2015), pp. 1–9.
  • A. Otero-de-la-Roza, D. Abbasi-Perez and V. Luana, Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun 182(10) (2011), pp. 2232–2248.
  • R. Paudel and J. Zhu, Theoretical study of structural, magnetic, elastic, phonon, and thermodynamic properties of Heusler alloys Fe2CrX (X = Al, Ga). J. Supercond. Nov. Magn 31 (2018), pp. 1791–1798.
  • A.T. Petit and P.L. Dulong, Recherches sur Quelques points importants de la Théorie de la Chaleur. Annales de Chimie et de Physique 10 (1819), pp. 395–413.
  • A. Allal, M. Halit, S. Saib, L. Azzouz, S. Maabed, M. Bouchenafa and R. Ahuja, Theoretical investigation of the structural, elastic, electronic, and optical properties of the ternary tetragonal tellurides KBTe2 (B = Al, In). Mater. Sci. Semicond.Process 113 (2020), pp. 105048.
  • G. Mustafa, A. Afaq, N. Ul Aarifeen, M. Asif, J. Ahmad, K.M. Ashraf, M. Shafiq, M. Ashraf and M. Akmal, Theoretical study of thermodynamic properties for SmAlO3 under the effects of pressure and temperature. Int. J. Mod. Phys. B 32 (2018), pp. 1850247.
  • S. Ahmad Dar, V. Srivastava, U. Kumar Sakalle, V. Parey, G. Pagare and A. combined DFT, DFT + U and mBJ investigation on electronic structure, magnetic, mechanical and thermodynamics of double perovskite Ba2ZnOsO6. Mater. Sci. Eng. B 236–237 (2018), pp. 217–224.
  • A.K. Kushwaha, Ş Uğur, M. Güler, E. Güler and G. Uğur, First principles investigations of structural, elastic, mechanical, electronic and optical properties of triple perovskite Ba2K2Te2O9. Physica B Condens. Matter 596 (2020), pp. 412404.
  • G. Uğur, A.K. Kushwaha, M. Güler, Z. Charifi, Ş Uğur, E. Güler and H. Baaziz, Electronic structure, optical and vibrational properties of Ti2FeNiSb2 and Ti2Ni2InSb double half heusler alloys. Mater. Sci. Semicond. Process 123 (2020), pp. 105531.
  • R. Majumder and M.M. Hossain, First-principles study of structural, electronic, elastic, thermodynamic and optical properties of topological superconductor LuPtBi. Comput. Condens. Matter 21 (2019), pp. e00402.
  • Gh. Forozani, F. Karami and M. Moradi, Structural, electronic, magnetic, and optical properties of Ir2ScZ (Z = Si, Ge, Sn) Full-Heusler compounds: A first-principles study. J. Electron. Mater 49 (2020), pp. 5947–5956.
  • D. Singh, S.K. Gupta, Y. Sonvane and I. Lukačević, Antimonene: a monolayer material for ultraviolet optical nanodevices. J. Mater. Chem C4 (2016), pp. 6386–6390.
  • M.I. Naher and S.H. Naqib, Structural, elastic, electronic, bonding, and optical properties of topological CaSn3 semimetal. J. Alloys Compd 829 (2020), pp. 154509.
  • A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder and K. A. Persson, Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials 1 (2013), pp.011002.
  • T. M. Gesing, K. H. Wachtmann and W. Jeitschko, The Perovskite Carbides A 3 MC (A = Sc, Y, La - Nd, Sm, Gd - Lu; M = AI, Ga, In, Tl, Sn, Pb). Zeitschrift für Naturforschung B 52(2) (1997), pp. 176–182.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.