74
Views
3
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Phase diagrams and magnetisations of mixed spin nanoparticles with transverse field and crystal field

, , &
Pages 264-282 | Received 20 May 2021, Accepted 26 Sep 2021, Published online: 15 Oct 2021

References

  • T. Ito and S. Okazaki, Pushing the limits of lithography. Nature 406 (2000), pp. 1027.
  • H.I. Smith and M.L. Schattenburg, X-ray lithography from 500 to 30 nm: X-ray nanolithography. IBM J. Res. Develop. 37 (1993), pp. 319.
  • J.A. Stroscio and D.M. Eigler, Atomic and molecular manipulation with the scanning tunneling microscope. Science 254 (1991), pp. 1319.
  • A.J. Haes and R.P. Van Duyne, A highly sensitive and selective surface-enhanced nanobiosensor. Mater. Res. Soc. Symp. Proc. 723 (2002), pp. O3.1.1.
  • Z.P. Huang, D.L. Carnahan, J. Rybczynski, M. Giersig, M. Sennett, D.Z. Wang, J.G. Wen, K. Kempa and Z.F. Ren, Growth of large periodic arrays of carbon nanotubes. Appl. Phys. Lett. 82 (2003), pp. 460.
  • A.J. Haes, C.L. Haynes and R.P. Van Duyne, Nanosphere lithography self-assembled photonic and magnetic materials. Mater. Res. Soc. Symp. 636 (2001), pp. D4.8.1.
  • T.R. Jensen, G.C. Schatz and R.P. Van Duyne, Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet-visible extinction spectroscopy and electrodynamic modeling. J. Phys. Chem. B 103 (1999), pp. 2394.
  • T. Kaneyoshi, Phase diagrams of a nanoparticle described by the transverse Ising model. Phys. Status Solidi B 242 (2005), pp. 2938.
  • T. Kaneyoshi, Phase transition in mixed spin Ising nanoparticles. J. Supercond. Nov. Magn. 33 (2020), pp. 1151.
  • Z.M. Lu, N. Si, Y.N. Wang, F. Zang, J. Meng, H.L. Miao and W. Jiang, Unique magnetism in different sizes of center decorated tetragonal nanoparticles with the anisotropy. Physica A 523 (2019), pp. 438.
  • T. Kaneyoshi, Ferrimagnetism and reentrant phenomena in a tetragonal Ising nanoparticle. Philos. Mag. 100(2020), pp. 1.
  • T. Kaneyoshi, Decorated Ising nanoparticles with high critical temperature. Phase Transitions 93 (2020), pp. 263.
  • W. Jiang and J.Q. Huang, Magnetic properties of a hexagonal prismatic nanoparticle with ferrimagnetic core–shell structure. Physica E 78 (2016), pp. 115.
  • H. El Hamri, S. Bouhou, I. Essoudi, A. Ainane and R. Ahuja, Reentrant phenomenon in a transverse spin-1 Ising nanoparticle with diluted magnetic sites. J. Magn. Magn. Mater 442 (2017), pp. 53.
  • M. Mouhib, N. Benayard and M. Azhari, Mixed spin (1/2,1) transverse Ising nanoparticles. J. Magn. Magn. Mater. 419 (2016), pp. 325.
  • E. Vatanserver and Y. Yuksel, Nonmagnetic impurities and roughness effects on the finite temperature magnetic properties of core-shell spherical nanoparticles with antiferromagnetic interface coupling. J. Magn. Magn. Mater. 441 (2017), pp. 548.
  • M. Mouhib, N. Benayad and M. Azhari, Monte Carlo investigation of mixed spin Ising 2D-nanoparticles. J. Phys. Commun. 2 (2018), pp. 045006.
  • A. Feraoun, S. Amraoui and M. Kerouad, Magnetic properties of a mixed spin (5/2,2) Ising core/shell nanoparticle: Monte Carlo study. Physica A 526 (2019), pp. 120924.
  • M. Blume, Theory of the first-order magnetic phase change in UO2. Phys. Rev. 141 (1966), pp. 517.
  • H.W. Capel, On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting show affiliations. Physica (Utrecht) 32 (1966), pp. 966.
  • Y. Tanaka and N. Uryu, Ising model with general spin and planar rotator model on the Bethe lattice. J. Phys. Soc. Jpn. 50 (1981), pp. 1140.
  • N. Benayad, Real-space renormalization group investigation of pure and disordered mixed spin Ising models on d-dimensional lattices. Z. Phys. B: Condens. Matter 81 (1990), pp. 99.
  • G.M. Zhang and C.Z. Yang, Monte Carlo study of the two-dimensional quadratic Ising ferromagnet with spins S=1/2 and S=1 and with crystal-field interactions. Phys. Rev. B 48 (1993), pp. 9452.
  • T. Kaneyoshi, Mean-field analysis of a ferrimagnetic mixed spin system. J. Magn. Magn. Mater. 98 (2000), pp. 201.
  • T. Sahdane, R. Masrour and A. Jabar, Ground state phase diagrams and ferroelectric hysteresis loops behaviour of dendrimer superlattice: A Monte Carlo study. Philos. Mag. 100 (2020), pp. 2876.
  • B. Deviren, M. Keskin and O. Canko, Dynamic phase transition and dynamic phase diagrams in the spin-5/2 Blume-Capel model under a time-dependent oscillating external field. Phase Transit. 82 (2009), pp. 683.
  • D. Mukamel and M. Blume, Ising model for tricritical points in ternary mixtures. Phys. Rev. A 10 (1974), pp. 610.
  • M. Schick and W.H. Shih, Spin-1 model of a microemulsion. Phys. Rev. B 34 (1986), pp. 1797.
  • K.E. Newman and J.D. Dow, Zinc-blende—diamond order-disorder transition in metastable crystalline (GaAs)1−xGe2x alloys. Phys. Rev. B 27 (1983), pp. 7495.
  • P.G. de Gennes, Collective motions of hydrogen bonds. Solid State Commun. 1 (1963), pp. 132.
  • X.F. Jiang, J.L. Li, J.L. Zhong and C.Z. Yang, Effect of a crystal field on phase transitions in a spin-1 transverse Ising model. Phys. Rev. B 47 (1993), pp. 827.
  • W. Jiang, L.Q. Guo, G.Z. Wei and A. Du, Longitudinal and transverse magnetizations of spin-3/2 transverse Ising model with the crystal field on square lattice. Physica B 307 (2001), pp. 15.
  • K. Htoutou, A. Oubelkacem, A. Ainane and M. Saber, The phase diagrams and the order parameters of the transverse spin-1 Ising model with a longitudinal crystal-field. Physica A 338 (2004), pp. 479.
  • K. Htoutou, A. Benaboud, A. Ainane and M. Saber, Tricritical behavior in the diluted transverse spin-1 Ising model with a longitudinal crystal field. J. Magn. Magn. Mater. 288 (2005), pp. 259.
  • Y. Yuksel and H. Polat, An introduced effective-field theory study of spin-1 transverse Ising model with crystal field anisotropy in a longitudinal magnetic field. J. Magn. Magn. Mater. 322 (2010), pp. 3907.
  • E. Kantar, The phase diagrams and reentrant phenomena in a cylindrical transverse Ising nanowire with the presence of crystal field. J. Supercond. Nov. Magn. 1 (2016), pp. 44.
  • N. Benayad and R. Zerhouni, Magnetic properties of the mixed spin transverse Ising model with longitudinal crystal field interactions. Phys. Status Solidi B 201 (1997), pp. 491.
  • N. Benayad, A. Fathi and R. Zerhouni, The diluted mixed-spin transverse Ising system with longitudinal crystal field interactions. J. Magn. Magn. Mater. 222 (2000), pp. 355.
  • S.L. Yan and C.Z. Yang, The influence of the different transverse fields on the critical properties in the mixed Ising spin system with single-ion anisotropy. Eur. Phys. J. B 13 (2000), pp. 625.
  • L.M. Liu, W. Jiang, Z. Wang, H.Y. Guan and A.B. Guo, Magnetization and phase diagram of a cubic nanowire in the presence of the crystal field and the transverse field. J. Magn. Magn. Mater. 324 (2012), pp. 4034.
  • N. Boccara, Dilute Ising models. Phys. Lett. A 94 (1983), pp. 185.
  • A. Benyoussef and N. Boccara, Phase diagrams of random Ising models: Simple and systematic successive approximations. J. Phys. 44 (1983), pp. 1143.
  • A. Benyoussef, N. Boccara and M. Saber, Dilute semi-infinite Ising model. J. Phys C 18 (1985), pp. 4275.
  • N. Benayad and A. Dakhama, Phase diagrams of the mixed spin Ising ferromagnet with a ferrimagnetic surface. J. Magn. Magn. Mater. 168 (1997), pp. 105.
  • N. Benayad and M. Ghliyem, Mixed spin Ising model with four-spin interaction and random crystal field. Physica B 407 (2012), pp. 12.
  • M. Azhari, N. Benayad and M. Mouhib, Continuum of compensation points in the mixed spin Ising ferrimagnet with four-spin interaction and next-nearest neighbor coupling. Phase Transit. 90 (2017), pp. 485.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.