213
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evolution of a self-assembled chessboard nanostructure spinel in a CoFeGaMnZn multicomponent oxide

, , , , &
Pages 1121-1135 | Received 17 Aug 2021, Accepted 13 Jan 2022, Published online: 10 Feb 2022

References

  • J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. 6 (2004), pp. 299–303.
  • B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A. 374-377 (2004), pp. 213–218.
  • B.S. Murty, J.-W. Yeh, and S. Ranganathan, High-Entropy Alloys, Butterworth-Heinemann, London, 2014.
  • D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122 (2017), pp. 448–511.
  • B.L. Musicó, D. Gilbert, T.Z. Ward, K. Page, E. George, J. Yan, D. Mandrus, and V. Keppens, The emergent field of high entropy oxides: design, prospects, challenges, and opportunities for tailoring material properties. APL Mater. 8 (2020), art. no. 040912 (16 pp.).
  • W. Steurer, Single-phase high-entropy alloys – a critical update. Mater. Char. 162 (2020), art. no. 110179 (17 pp.).
  • V. Shivam, J. Basu, R. Manna, and N.K. Mukhopadhyay, Local composition migration induced microstructural evolution and mechanical properties of non-equiatomic Fe40Cr25Ni15 Al15Co5 medium-entropy alloy. Met. Mater. Trans. A. 52A (2021), pp. 1777–1789.
  • O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward, Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Comm. 6 (2015), art.no. 6529 (10 pp.).
  • Y. Ma, Y. Ma, Q. Wang, S. Schweidler, M. Botros, T. Fu, H. Hahn, T. Brezesinski, and B. Breitung, High-entropy energy materials: challenges and new opportunities. Energy Environ. Sci. 14 (2021), pp. 2883–2905.
  • A. Sarkar, L. Velasco, D. Wang, Q. Wang, G. Talasila, L.D. Biasi, C. Kübel, T. Brezesinski, S.S. Bhattacharya, H. Hahn, and B. Breitung, High entropy oxides for reversible energy storage. Nature Comm. 9 (2018), art. no. 3400 (9 pp.).
  • V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, and N.K. Mukhopadhyay, Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy. J. Alloys Comp. 757 (2018), pp. 87–97.
  • V. Shivam, Y. Shadangi, J. Basu, and N.K. Mukhopadhyay, Alloying behavior and thermal stability of mechanically alloyed nano AlCoCrFeNiTi high-entropy alloy. J. Mater. Res. 34 (2019), pp. 787–795.
  • C.M. Rost, E. Sachet, T. Borman, A. Moballegh, E.C. Dickey, D. Hou, J.L. Jones, S. Curtarolo, and J.-P. Maria, Entropy-stabilized oxides. Nature Comm. 6 (2015), art.no. 6485 (8 pp.).
  • A. Sarkar, R. Djenadic, N.J. Usharani, K.P. Sanghvi, V.S.K. Chakravadhanula, A.S. Gandhi, H. Hahn, and S.S. Bhattacharya, Nanocrystalline multicomponent entropy stabilised transition metal oxides. J. Eur. Ceram. Soc. 37 (2017), pp. 747–754.
  • R. Djenadic, A. Sarkar, O. Clemens, C. Loho, M. Botros, V.S.K. Chakravadhanula, C. Kübel, S.S. Bhattacharya, A.S. Gandhi, and H. Hahn, Multicomponent equiatomic rare earth oxides. Mater. Res. Lett. 5 (2017), pp. 102–109.
  • D. Bérardan, S. Franger, A.K. Meena, and N. Dragoe, Room temperature lithium superionic conductivity in high entropy oxides. J. Mater. Chem. A. 4 (2016), pp. 9536–9541.
  • A. Sarkar, Q. Wang, A. Schiele, M.R. Chellali, S.S. Bhattacharya, D. Wang, T. Brezesinski, H. Hahn, L. Velasco, and B. Breitung, High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31 (2019), art. no. 1806236 (9 pp.).
  • C.L. Zhang, C.M. Tseng, C.H. Chen, S. Yeo, Y.J. Choi, and S.-W. Cheong, Magnetic nanocheckerboards with tunable sizes in the Mn-doped CoFe2O4CoFe2O4 spinel. Appl. Phys. Lett. 91 (2007), art. no. 233110 (4 pp.).
  • S. Park, Y. Horibe, T. Asada, L.S. Wielunski, N. Lee, P.L. Bonanno, S.M. O’Malley, A.A. Sirenko, A. Kazimirov, M. Tanimura, T. Gustafsson, and S.-W. Cheong, Highly aligned epitaxial nanorods with a checkerboard pattern in oxide films. Nano Lett. 8 (2008), pp. 720–724.
  • Y. Ni and A.G. Khachaturyan, From chessboard tweed to chessboard nanowire structure during pseudospinodal decomposition. Nature Mater. 8 (2009), pp. 410–414.
  • C. Li, X. Han, F. Cheng, Y. Hu, C. Chen, and J. Chen, Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrolysis. Nature Comm. 6 (2015), art. No. 7345 (8 pp.).
  • Z.S. Basinski and J.W. Christian, Crystallography of deformation by twin boundary movements in indium-thallium alloys. Acta Metall. 2 (1954), pp. 101–116.
  • Z.S. Babinski and J.W. Christian, Interpenetrating bands in transformed indium– thallium alloys. Acta Metall. 4 (1956), pp. 371–378.
  • D.Y. Cong, Y.D. Zhang, C. Esling, Y.D. Wang, J.S. Lecomte, X. Zhao, and L. Zuo, Microstructural and crystallographic characteristics of interpenetrating and non-interpenetrating multiply twinned nanostructure in a Ni–Mn–Ga ferromagnetic shape memory alloy. Acta Mater. 59 (2011), pp. 7070–7081.
  • J.W. Christian and S. Mahajan, Deformation twinning. Prog. Mater. Sci. 39 (1995), pp. 1–157.
  • S. Praveen, J. Basu, S. Kashyap, and R.S. Kottada, Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Comp. 662 (2016), pp. 361–367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.