157
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Structural, elastic, electronic, and magnetic properties of ferromagnetic inverse-perovskite Pr3InO

, ORCID Icon, , , , , & show all
Pages 1194-1207 | Received 03 Nov 2021, Accepted 28 Jan 2022, Published online: 23 Feb 2022

References

  • J.B. Goodenough, J.M. Longo, Magnetic and other properties of oxides and related compounds, K.-H. Hellwege and O. Madelung, Crystallographic and Magnetic Properties of Perovskites and Perovskite-Related Compounds Ed., Landolt-Börnstein, 4a, Springer, Berlin, 1970. pp. 367.
  • E.O. Chi, W.S. Kim and N.H. Hur, Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3. Solid State Commun. 120 (2001), pp. 307–310.
  • W.S. Kim, E.O. Chi, J.C. Kim, H.S. Choi and N.H. Hur, Close correlation among lattice, spin, and charge in the manganese-based antiperovskite material. Solid State Commun. 119 (2001), pp. 507–510.
  • T. He, Q. Huang, A.P. Ramirez, Y. Wang, K.A. Regan, N. Rogado, M.A. Hayward, M.K. Haas, J.S. Slusky, K. Inumara, H.W. Zandbergen, N.P. Ong and R.J. Cava, Superconductivity in the non-oxide perovskite MgCNi3. Nature 411 (2001), pp. 54–56.
  • D.J. Singh and I.I. Mazin, Superconductivity and electronic structure of perovskite MgCNi3. Phys. Rev. B: Condens. Matter. 64 (2001), pp. 140507.
  • D.A. Joshi, N. Kumar, A. Thamizhavel and S.K. Dhar, Magnetic behavior in RRh3X (R = rare earth; X = B, C). Phys. Rev. B: Condens. Matter. 80 (2009), pp. 224404.
  • I.R. Shein, V.V. Bannikov and A.L. Ivanovskii, Structural, elastic and electronic properties of superconducting anti-perovskites MgCNi3, ZnCNi3 and CdCNi3 from first principles. Phys. C 468 (2008), pp. 1–6.
  • M. Mattesini, M. Magnuson, F. Tasnádi, C. Höglund, I.A. Abrikosov and L. Hultman, Elastic properties and electrostructural correlations in ternary scandium-based cubic inverse perovskites: A first-principles study. Phys. Rev. B: Condens. Matter. 79 (2009), pp. 125122.
  • M. Magnuson, M. Mattesini, C. Höglund, I.A. Abrikosov, J. Birch and L. Hultman, Electronic structure investigation of the cubic inverse perovskite Sc3AlN. Phys. Rev. B: Condens. Matter. 78 (2008), pp. 235102.
  • A.S. Mikhaylushkin, C. Höglund, J. Birch, Z. Czigány, L. Hultman, S.I. Simak, B. Alling, F. Tasnádi and I.A. Abrikosov, Stability of the ternary perovskites Sc3EN (E = B, Al, Ga, In) from first principles. Phys. Rev. B: Condens. Matter. 79 (2009), pp. 134107.
  • P.M. Singer, T. Imai, T. He, M.A. Hayward and R.J. Cava, 13C NMR investigation of the superconductor MgCNi3 up to 800 K. Phys. Rev. Lett. 87 (2001), pp. 257601.
  • E.V. Gomonaj and V.A. L’vov, A theory of spin reorientation and piezomagnetic effect in noncollinear Mn3AgN antiferromagnet. Phase Transitions 40 (1992), pp. 225–237.
  • T. Shimizu, T. Shibayama, K. Asano and K. Takenaka, Giant magnetostriction in tetragonally distorted antiperovskite manganese nitrides. J. Appl. Phys 111(7) (2012), pp. 07A903.
  • P. Tong, Y.P. Sun, X.B. Zhu and W.H. Song, Strong spin fluctuations and possible non-fermi-liquid behavior in AlCNi3. Phys. Rev. B 74 (2006), pp. 224416.
  • K. Takenaka and H. Takagi, Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides. Appl. Phys. Lett. 87 (2005), pp. 261902.
  • K. Takenaka, K. Asano, M. Misawa and H. Takagi, Negative thermal expansion in Ge-free antiperovskite manganese nitrides: Tin-doping effect. Appl. Phys. Lett. 92 (2008), pp. 011927.
  • R.J. Huang, L.F. Li, F.S. Cai, X.D. Xu and L.H. Qian, Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si. Appl. Phys. Lett. 93 (2008), pp. 081902.
  • T. Tohei, H. Wada and T. Kanomata, Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC. J. Appl. Phys. 94 (2003), pp. 1800–1802.
  • B.S. Wang, J.C. Lin, P. Tong, L. Zhang, W.J. Lu, X.B. Zhu, Z.R. Yang, W.H. Song, J.M. Dai and Y.P. Sun, Structural, magnetic, electrical transport properties, and reversible room-temperature magnetocaloric effect in antipervoskite compound AlCMn3. J. Appl. Phys. 108 (2010), pp. 093925.
  • M. Hassan, I. Arshad and Q. Mahmood, Computational study of electronic, optical and thermoelectric properties of X3PbO (X = Ca, Sr, Ba) anti-perovskites. Semicond. Sci. Technol. 32(11) (2017), pp. 115002.
  • M. Bilal, S. Jalali-Asadabadi, R. Ahmad and I. Ahmad, Electronic properties of antiperovskite materials from state-of-the-art density functional theory. J. Chem 2015 (2015), pp. 1–11.
  • A.D. Christianson and S. Bobev, Pr3ino Re-assessment of the cubic Pr3In structure. Acta Cryst. 63(10) (2007), pp. 184.
  • M. Kirchner, W. Schnelle and R. Niewa, Inverse perovskites (Eu3O)E with E Sn, in preparation, crystal structures and physical properties. Z. Anorg. Allg. Chem. 632 (2006), pp. 559–564.
  • J. Nuss, C. Mühle, K. Hayama, V. Abdolazimi and H. Takagi, Tilting structures in inverse perovskites, M3TtO (M = Ca, Sr, Ba, Eu; Tt = Si, Ge, Sn, Pb). Acta Cryst. B71 (2015), pp. 300–312.
  • Z. Ali, B. Khan, I. Ahmad, I. Khan and S.J. Asadabadi, Magneto-electronic studies of the inverse-perovskite (Eu3O)In. J. Magn. Magn. Mater. 381 (2015), pp. 34–40.
  • E. Sjöstedt, L. Nordström and D.J. Singh, An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114 (2000), pp. 15–20.
  • G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt and L. Nordström, Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64 (2001), pp. 195134.
  • K. Schwarz, P. Blaha and G.K.H. Madsen, Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147 (2002), pp. 71–76.
  • P. Hohenberg and W. Kohn, Inhomogeneous electron Gas. Phys. Rev. 136 (1964), pp. 864–871.
  • W. Kohn and L.J. Sham, Self-Consistent equations including exchange and correlation effects. Phys. Rev 140 (1965), pp. 1133–1138.
  • P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka and J. Luitz. WIEN2k: An augmented plane wave plus local orbitals program for calculating crystal properties (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2001).
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865–3868.
  • D.M. Ceperley and B.J. Alder, Ground state of the electron gas by a stochastic method. Phys. Rev. Lett 45 (1980), pp. 566–569.
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett 100 (2008), pp. 136406.
  • J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23 (1981), pp. 5048.
  • F. Birch, Finite elastic strain of cubic crystals. Phys. Rev 71 (1947), pp. 809–824.
  • M. Born and R. Fürth, The stability of crystal lattices. III: An attempt to calculate the tensile strength of a cubic lattice by purely static considerations, in Mathematical Proceedings of the Cambridge Philosophical Society, Vol 36, Cambridge University Press, Britain, 1940. p. 454–465.
  • J. Haines, J.M. Ĺeger and G. Bocquillon, Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31 (2001), pp. 1–23.
  • K. Bidai, M. Ameri, S. Amel, I. Ameri, Y. Al-Douri, D. Varshney and C.H. Voon, First-principles calculations of pressure and temperature dependence of thermodynamic properties of anti-perovskite BiNBa3 compound. Chin. J. Phys. 55 (2017), pp. 2144–2155.
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45 (1954), pp. 823–843.
  • I.N. Frantsevich, F.F. Voronov and S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators, in :Handbook, I.N. Frantsevich, eds., Naukova Dumka, Kiev, 1983, p. 60–180.
  • E. Schreiber, O.L. Anderson and N. Soga, Elastic Constants and Their Measurements, McGraw-Hill Book Company, New York, 1973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.