280
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Vacancy migration in α-iron investigated using in situ high-voltage electron microscopy

, &
Pages 1173-1193 | Received 02 Oct 2021, Accepted 03 Feb 2022, Published online: 27 Feb 2022

References

  • C. Domain, C.S. Becquart, and L. Malerba, Simulation of radiation damage in Fe alloys: an object kinetic Monte Carlo approach, J. Nucl. Mater. 335 (2004), pp. 121–145.
  • C.C. Fu, J. Dalla Torre, F. Willaime, J.L. Bocquet, and A. Barbu, Multiscale modelling of defect kinetics in irradiated iron, Nat. Mater. 4 (2005), pp. 68–74.
  • C. Björkas, K. Nordlund, and M.J. Caturla, Influence of the picosecond defect distribution on damage accumulation in irradiated α-Fe, Phys. Rev. B 85 (2012), Article ID 024105.
  • R.E. Stoller, S.I. Golubov, C. Domain, and C.S. Becquart, Mean field rate theory and object kinetic Monte Carlo: A comparison of kinetic models, J. Nucl. Mater. 382 (2008), pp. 77–90.
  • C.S. Becquart, A. Barbu, J.L. Bocquet, M.J. Caturla, C. Domain, C.-C. Fu, S.I. Golubov, M. Hou, L. Malerba, C.J. Ortiz, A. Souidi, and R.E. Stoller, Modeling the long-term evolution of the primary damage in ferritic alloys using coarse-grained methods, J. Nucl. Mater. 406 (2010), pp. 39–54.
  • A.A. Kohnert, B.D. Wirth, and L. Capolungo, Modeling microstructural evolution in irradiated materials with cluster dynamics methods: A review, Comput. Mater. Sci. 149 (2018), pp. 442–459.
  • M. Kiritani and N. Yoshida, Free migration of interstitial atoms in metals, J. Phys. Soc. Jpn. 36 (1974), pp. 613–613.
  • M. Kiritani, N. Yoshida, H. Takata, and Y. Maehara, Growth of interstitial type dislocation loops and vacancy mobility in electron irradiated metals, J. Phys. Soc. Jpn. 38 (1975), pp. 1677–1686.
  • Y. Abe, Y. Satoh, and N. Hashimoto, Migration energy of a self-interstitial atom in α-iron estimated by in situ observation of interstitial clusters at low temperatures using high-voltage electron microscopy, Philos. Mag. 101 (2021), pp. 1619–1631.
  • S. Takaki, J. Fuss, H. Kugler, U. Dedek, and H. Schults, The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation, Rad. Effects 79 (1983), pp. 87–122.
  • C.C. Fu, F. Willaime, and P. Ordejon, Stability and mobility of mono- and di-interstitials in α-Fe, Phys. Rev. Lett. 92 (2004), Article ID 175503.
  • F. Willaime, C. Fu, M. Marinica, and J. Dalla Torre, Stability and mobility of self-interstitials and small interstitial clusters in a-iron: ab initio and empirical potential calculations, Nucl. Instrum. Methods Phys. Res. Sect. B 228 (2005), pp. 92–99.
  • C.C. Fu, E. Meslin, A. Barbu, F Willaime, and V Oison, Effect of C on vacancy migration in α-iron, Solid State Phenomena Trans. Tech Publ. 139 (2008), pp. 157–164.
  • N. Yoshida, M. Kiritani, and F.E. Fujita, Electron radiation damage of iron in high voltage electron microscope, J. Phys. Soc. Jpn. 39 (1975), pp. 170–179.
  • M. Kiritani and H. Takata, Dynamic studies of defect mobility using high voltage electron microscopy, J. Nucl. Mater. 69&70 (1978), pp. 277–309.
  • M. Kiritani, H. Takata, K. Moriyama, and F.E. Fujita, Mobility of lattice vacancies in iron, Philos. Mag. A 40 (1979), pp. 779–802.
  • N. Hashimoto, S. Sakuraya, J. Tanimoto, and S. Ohnuki, Effect of impurities on vacancy migration energy in Fe-based alloys, J. Nucl. Mater. 445 (2014), pp. 224–226.
  • P.P. Liu, Q. Zhan, W.T. Han, X.O. Yi, S. Ohnuki, and F.R. Wan, Effect of helium and hydrogen synergy on vacancy migration energy in Fe-10Cr model alloy, J. Alloys. Compd. 788 (2019), pp. 446–452.
  • T. Tabata, H. Fujita, H. Ishii, K. Igaki, and M. Isshiki, Determination of mobility of lattice vacancies in pure iron by high voltage electron microscopy, Scripta Metall. 15 (1981), pp. 1317–1321.
  • Y. Satoh, T. Yoshiie, and S. Arai, Undersize solute element effects on defect structure development in copper under electron irradiation, Philos. Mag. 98 (2018), pp. 646–672.
  • Y. Satoh, H. Matsui, and T. Hamaoka, Effects of impurities on one-dimensional migration of interstitial clusters in iron under electron irradiation, Phys. Rev. B 77 (2008), Article ID 094135.
  • Y. Satoh and H. Matsui, Obstacles for one-dimensional migration of interstitial clusters in iron, Philos. Mag. 89 (2009), pp. 1489–1504.
  • Y. Satoh, Y. Abe, H. Abe, Y. Matsukawa, S. Kano, S. Ohnuki, and N. Hashimoto, Vacancy effects on one-dimensional migration of interstitial clusters in iron under electron irradiation at low temperatures, Philos. Mag. 96 (2016), pp. 2219–2242.
  • Y. Abe, Y. Satoh, N. Hashimoto, and S. Ohnuki, Effects of one-dimensional migration of self-interstitial atom clusters on the decreasing behavior of their number density in electron-irradiated α-iron, Philos. Mag. 100 (2020), pp. 110–125.
  • O.S. Oen, Cross sections for atomic displacements in solids by fast electrons, Report ORNL-4897, Oak Ridge National Laboratory, USAEC, 1973
  • K. Urban, Proceedings of the Fourth International Conference on High Voltage Electron Microscopy, Toulouse, 1975, p. 159.
  • M. Kiritani, K. Yoshida, and H. Fujita, Local temperature rise by electron beam in HVEM, Proceedings of the Fifth International Conference on High Voltage Electron microscopy, Kyoto, 1977, pp. 501–504
  • MATLAB, 9.9.0.1524771 (R2020b). The MathWorks Inc, Natick, Massachusetts, 2020.
  • D. Terentyev, N. Anento, A. Serra, V. Jansson, H. Khater, and G. Bonny, Interaction of carbon with vacancy and self-interstitial atom clusters in α-iron studied using metallic-covalent interatomic potential, J. Nucl. Mater. 408 (2011), pp. 272–284.
  • Y. Abe, T. Suzudo, S. Jitsukawa, T. Tsuru, and T. Tsukada, Effects of carbon impurity on microstructural evolution in irradiated α-iron, Fusion Sci. Technol. 62 (2012), pp. 139–144.
  • N. Anento and A. Serra, Carbon-vacancy complexes as traps for self-interstitial clusters in Fe-C alloys, J. Nucl. Mater. 440 (2013), pp. 236–242.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.