420
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Interactive transformation mechanisms of multiple metastable precipitates in a Si-rich Al-Mg-Si alloy

, , , , , & show all
Pages 1602-1627 | Received 29 Dec 2021, Accepted 23 Feb 2022, Published online: 15 Mar 2022

References

  • W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P.D. Smet, A. Haszler and A. Vieregge, Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng. A. 280 (2000), pp. 37–49.
  • L. Ding, Y. Weng, S. Wu, R.E. Sanders, Z. Jia and Q. Liu, Influence of interrupted quenching and pre-aging on the bake hardening of Al–Mg–Si alloy. Mater. Sci. Eng. A. 651 (2016), pp. 991–998.
  • S. Zhu, H.-C. Shih, X. Cui, C.-Y. Yu and S.P. Ringer, Design of solute clustering during thermomechanical processing of AA6016 Al–Mg–Si alloy. Acta Mater. 203 (2021), pp. 116455.
  • W.J. Poole, X. Wang, D.J. Lloyd and J.D. Embury, The shearable–non-shearable transition in Al–Mg–Si–Cu precipitation hardening alloys: Implications on the distribution of slip, work hardening and fracture. Philos. Mag. 85 (2005), pp. 3113–3135.
  • S.J. Andersen, C.D. Marioara, J. Friis, S. Wenner and R. Holmestad, Precipitates in aluminium alloys. Adv. Phys. X. 3 (2018), pp. 1479984.
  • A. Cuniberti, A. Tolley, M.V.C. Riglos and R. Giovachini, Influence of natural aging on the precipitation hardening of an AlMgSi alloy. Mater. Sci. Eng. A. 527 (2010), pp. 5307–5311.
  • M.A. van Huis, J.H. Chen, M.H.F. Sluiter and H.W. Zandbergen, Phase stability and structural features of matrix-embedded hardening precipitates in Al–Mg–Si alloys in the early stages of evolution. Acta Mater. 55 (2007), pp. 2183–2199.
  • L. Ding, Y. He, Z. Wen, P. Zhao, Z. Jia and Q. Liu, Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times. J. Alloy Compd. 647 (2015), pp. 238–244.
  • C.D. Marioara, S.J. Andersen, H.W. Zandbergen and R. Holmestad, The influence of alloy composition on precipitates of the Al-Mg-Si system. Metall. Mater. Trans. A. 36 (2005), pp. 691–702.
  • K. Matsuda, S. Ikeno, K. Terayama, H. Matsui, T. Sato and Y. Uetani, Comparison of precipitates between excess Si–type and balanced-type Al-Mg-Si alloys during continuous heating. Metall. Mater. Trans. A. 36 (2005), pp. 2007–2012.
  • T. Saito, C.D. Marioara, S.J. Andersen, W. Lefebvre and R. Holmestad, Aberration-corrected HAADF-STEM investigations of precipitate structures in Al–Mg–Si alloys with low Cu additions. Philos. Mag. 94 (2014), pp. 520–531.
  • A.K. Guptaa, D.J. Lloyda and S.A. Courtb, Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater. Sci. Eng. A. 316 (2001), pp. 11–17.
  • L. Cao, P.A. Rometsch and M.J. Couper, Effect of pre-ageing and natural ageing on the paint bake response of alloy AA6181A. Mater. Sci. Eng. A. 571 (2013), pp. 77–82.
  • S. Esmaeili, X. Wang, D.J. Lloyd and W.J. Poole, On the precipitation-hardening behavior of the Al-Mg-Si-Cu alloy AA6111. Metall. Mater. Trans. A. 34 (2003), pp. 751–763.
  • M.X. Guo, Y. Zhang, X.K. Zhang, J.S. Zhang and L.Z. Zhuang, Non-isothermal precipitation behaviors of Al-Mg-Si-Cu alloys with different Zn contents. Mater. Sci. Eng. A. 669 (2016), pp. 20–32.
  • Y. Koshino, M. Kozuka, S. Hirosawa and Y. Aruga, Comparative and complementary characterization of precipitate microstructures in Al-Mg-Si(-Li) alloys by transmission electron microscopy, energy dispersive X-ray spectroscopy and atom probe tomography. J. Alloy Compd. 622 (2015), pp. 765–770.
  • G.A. Edwards, K. Stille, G.L. Dunlop and M.J. Couper, The precipitation sequence in Al-Mg-Si alloys. Acta Mater. 46 (1998), pp. 3893–3904.
  • C. Cayron and P.A. Buffat, Structural phase transition in Al-Cu-Mg-Si and Al-Mg-Si alloys: Ordering mechanisms and crystallographic structures. Mater. Sci. Form. 331-337 (2000), pp. 1001–1006.
  • C.D. Marioara, S.J. Andersen, J. Jansen and H.W. Zandbergen, Atomic model for GP-zones in a 6082 Al–Mg–Si system. Acta Mater. 49 (2001), pp. 321–328.
  • H.W. Zandbergen, S.J. Andersen and J. Jansen, Structure determination of Mg5Si6 particles in Al by dynamic electron diffraction studies. Science 277 (1997), pp. 1221–1225.
  • J.H. Chen, E. Costan, M.A.v. Huis, Q. Xu and H.W. Zandbergen, Atomic pillar–based nanoprecipitates strengthen AlMgSi alloys. Science 312 (2006), pp. 416–419.
  • S. Wenner, L. Jones, C.D. Marioara and R. Holmestad, Atomic-resolution chemical mapping of ordered precipitates in Al alloys using energy-dispersive X-ray spectroscopy. Micron 96 (2017), pp. 103–111.
  • L. Ding, Y. Weng, Z. Jia, R. Zang and Q. Liu, Understanding the role of short-range order in the nucleation and transformation of the B′/Q′ precipitates in Al-Mg-Si(-Cu) alloys. Metall. Mater. Trans. A. 52 (2021), pp. 3366–3381.
  • K. Matsuda, Y. Sakaguchi, Y. Miyata, Y. Uetani, T. Sato and S.I.A. Kamio, Precipitation sequence of various kinds of metastable phases in Al-1.0mass% Mg2Si-0.4mass% Si alloy. J. Mater. Sci. 35 (2000), pp. 179–189.
  • S.J. Andersen, C.D. Marioara, A. Frøseth, R. Vissers and H.W. Zandbergen, Crystal structure of the orthorhombic U2-Al4Mg4Si4 precipitate in the Al–Mg–Si alloy system and its relation to the β′ and β″ phases. Mater. Sci. Eng. A. 390 (2005), pp. 127–138.
  • S.J. Andersen, C.D. Marioara, R. Vissers, A. Frøseth and H.W. Zandbergen, The structural relation between precipitates in Al–Mg–Si alloys, the Al-matrix and diamond silicon, with emphasis on the trigonal phase U1-MgAl2Si2. Mater. Sci. Eng. A. 444 (2007), pp. 157–169.
  • H. Chen, J. Lu, Y. Kong, K. Li, T. Yang, A. Meingast, M. Yang, Q. Lu and Y. Du, Atomic scale investigation of the crystal structure and interfaces of the B′ precipitate in Al-Mg-Si alloys. Acta Mater. 185 (2020), pp. 193–203.
  • Y.X. Lai, W. Fan, M.J. Yin, C.L. Wu and J.H. Chen, Structures and formation mechanisms of dislocation-induced precipitates in relation to the age-hardening responses of Al-Mg-Si alloys. J. Mater. Sci.Technol. 41 (2020), pp. 127–138.
  • J.K. Sunde, C.D. Marioara, A.T.J. van Helvoort and R. Holmestad, The evolution of precipitate crystal structures in an Al-Mg-Si(-Cu) alloy studied by a combined HAADF-STEM and SPED approach. Mater. Charact. 142 (2018), pp. 458–469.
  • L. Ding, Z. Jia, Z. Zhang, R.E. Sanders, Q. Liu and G. Yang, The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions. Mater. Sci. Eng. A. 627 (2015), pp. 119–126.
  • L. Ding, Z. Jia, J.-F. Nie, Y. Weng, L. Cao, H. Chen, X. Wu and Q. Liu, The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy. Acta Mater. 145 (2018), pp. 437–450.
  • C. Cayron, L. Sagalowicz, O. Beffort and P.A. Buffat, Structural phase transition in Al-Cu-Mg-Si alloys by transmission electron microscopy study on an Al-4 wt% Cu-1 wt% Mg-Ag alloy reinforced by SiC particles. Philos. Mag. A. 79 (1999), pp. 2833–2851.
  • C.D. Marioara, S.J. Andersen, T.N. Stene, H. Hasting, J. Walmsley, A.T.J. Van Helvoort and R. Holmestad, The effect of Cu on precipitation in Al–Mg–Si alloys. Philos. Mag. 87 (2007), pp. 3385–3413.
  • M.A. van Huis, J.H. Chen, H.W. Zandbergen and M.H.F. Sluiter, Phase stability and structural relations of nanometer-sized, matrix-embedded precipitate phases in Al–Mg–Si alloys in the late stages of evolution. Acta Mater. 54 (2006), pp. 2945–2955.
  • H. Jin, R. Guan, X. Huang, Y. Fu, J. Zhang, X. Chen, Y. Wang, F. Gao and D. Tie, Understanding the precipitation mechanism of copper-bearing phases in Al-Mg-Si system during thermo-mechanical treatment. J. Mater. Sci.Technol. 96 (2022), pp. 226–232.
  • T. Philippe and P.W. Voorhees, Ostwald ripening in multicomponent alloys. Acta Mater. 61 (2013), pp. 4237–4244.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.