317
Views
9
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Pressure dependence of the electronic, optical, thermoelectric, thermodynamic properties of CsVO3: first-principles study

, , , &
Pages 1522-1546 | Received 14 Dec 2021, Accepted 17 Mar 2022, Published online: 31 Mar 2022

References

  • J. Luo, A. Yang, Z. Xie, J. Huang and X. Zuo, Preparation, optical properties and first principle calculation of CsVO3. J. Lumin 229 (2021), pp. 117658.
  • L. Niu, S.-H. Chang, X. Tong, G. Li and Z. Shi, Analysis of characteristics of vanadate conversion coating on the surface of magnesium alloy. J. Alloys Compd 617 (2014), pp. 214–218.
  • L. Shan, G. Wang, J. Suriyaprakash, D. Li, L. Liu and L. Dong, Solar light driven pure water splitting of B-doped BiVO4 synthesized via a sol–gel method. J. Alloys Compd 636 (2015), pp. 131–137.
  • X. Liu, L. Li, H.M. Noh, J.H. Jeong, K. Jang and D.S. Shin, Chemical bond parameters, charge transfer band, tunable white light of Tm3+ and Sm3+ coactivated Ca9Gd(VO4) 7. J. Alloys Compd 618 (2015), pp. 649–655.
  • W. Paszkowicz, J. Lopez-Solano, P. Piszora, B. Bojanowski, A. Mujica, A. Munoz, Y. Cerenius, S. Carlson and H. Dąbkowska, Equation of state and electronic properties of EuVO4: A high-pressure experimental and computational study. J. Alloys Compd 648 (2015), pp. 1005–1016.
  • N. Suzuki, T. Noritake and T. Hioki, Structural analysis and physical properties of Sr2- xLaxVO4- δ. J. Alloys Compd 612 (2014), pp. 114–119.
  • L.Z. Pei, N. Lin, T. Wei, H.D. Liu and H.Y. Yu, Zinc vanadate nanorods and their visible light photocatalytic activity. J. Alloys Compd 631 (2015), pp. 90–98.
  • A.V. Ishchenko, K.V. Ivanovskikh, I.A. Weinstein, R.F. Samigullina and V.V. Platonov, Luminescence mechanism and energy transfer in cesium metavanadate CsVO3. Radiat. Meas 124 (2019), pp. 48–53.
  • H. Gobrecht and G. Heinsohn, Über die Lumineszenz der Alkalivanadate. Z. Für Phys 147 (1957), pp. 350–360.
  • T. Nakajima, M. Isobe, Y. Uzawa and T. Tsuchiya, Rare earth-free high color rendering white light-emitting diodes using CsVO3 with highest quantum efficiency for vanadate phosphors. J. Mater. Chem. C 3 (2015), pp. 10748–10754.
  • B.V. Slobodin, A.V. Ishchenko, R.F. Samigullina, O.S. Teslenko, B.V. Shul’gin and D.Y. Zhurakovskii, Thermochemical and luminescent properties of RbVO3, CsVO3, and Rb0.5Cs0.5VO3. Inorg. Mater 47 (2011), pp. 1126–1131.
  • T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda and T. Kumagai, A revisit of photoluminescence property for vanadate oxides AVO3 (A: K, Rb and Cs) and M3V2O8 (M: Mg and Zn). J. Lumin 129 (2009), pp. 1598–1601.
  • X. Qiao, Y. Li, Y. Wan, Y. Huang, H. Cheng and H.J. Seo, Preparation, characterization and high quantum efficiency of yellow-emitting CsVO3 nanofibers. J. Alloys Compd 656 (2016), pp. 843–848.
  • G. Sun, W. Li, S. Ji, X. Cao and P. Jin, Heterogeneity in optimized solid-state synthesis of metavanadate AVO3 (A= Rb, Cs). Res. Chem. Intermed 43 (2017), pp. 341–352.
  • T. Nakajima, M. Isobe, T. Tsuchiya, Y. Ueda and T. Kumagai, Direct fabrication of metavanadate phosphor films on organic substrates for white-light-emitting devices. Nat. Mater 7 (2008), pp. 735–740.
  • T. Matsuura, H. Miyazaki and T. Ota, Low-temperature synthesis of white-light-emitting CsVO3 nanoparticles by an aqueous solution route. J. Ceram. Soc. Jpn 125 (2017), pp. 657–659.
  • E. Pavitra, G.S.R. Raju, L.K. Bharat, J.Y. Park, C.H. Kwak, J.W. Chung, Y.-K. Han and Y.S. Huh, Evolution of highly efficient rare-earth free Cs(1- x)RbxVO3 phosphors as a single emitting component for NUV-based white LEDs. J. Mater. Chem. C 6 (2018), pp. 12746–12757.
  • T. Nakajima, K. Shinoda and T. Tsuchiya, Single-LED solar simulator for amorphous Si and dye-sensitized solar cells. RSC Adv. 4 (2014), pp. 19165–19171.
  • J. Luo, A. Yang, X. Wang and K. Liu, First-principles study on the electronic structures and optical properties of CsVO3. Ferroelectrics 564 (2020), pp. 52–58.
  • S. Nazir, I. Mahmood, N.A. Noor, A. Laref and M. Sajjad, Ab-initio simulations of MgTiO3 oxide at different pressure. High Energy Density Phys. 33 (2019), pp. 100715.
  • M. Aslam, A. Khan, M.A. Hashmi, M. Sajjad, E. Algrafy, G.M. Mustafa, A. Mahmood and S.M. Ramay, Physical characteristics of CdZrO3 perovskite at different pressure for optoelectronic application. J. Mater. Res. Technol 9 (2020), pp. 9965–9971.
  • Q. Mahmood, S.A. Ali, M. Hassan and A. Laref, First principles study of ferromagnetism, optical and thermoelectric behaviours of AVO3 (A= Ca, Sr, Ba) perovskites. Mater. Chem. Phys 211 (2018), pp. 428–437.
  • N.A. Noor, N. Mushahid, A. Khan, N.A. Kattan, A. Mahmood and S.M. Ramay, Vanadium based XVO3 (X= Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations. Chin. Phys. B 29 (2020), pp. 097101.
  • M.A. Rahman, M.Z. Rahaman, M.S. Ali and M.A.R. Sarker, Theoretical investigation on MgV2O6: ab-initio study. Philos. Mag 98 (2018), pp. 2077–2093.
  • M.A. Rahman, M.Z. Rahaman, M.A. Khatun and M.A.R. Sarker, First principles investigation of structural, electronic and optical properties of NiV2O6. Comput. Condens. Matter 15 (2018), pp. 95–99.
  • P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K. Madsen and L.D. Marks, WIEN2k: An APW+ lo program for calculating the properties of solids. J. Chem. Phys 152 (2020), pp. 074101.
  • O.K. Andersen and T. Saha-Dasgupta, Muffin-tin orbitals of arbitrary order. Phys. Rev. B 62 (2000), pp. R16219.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865.
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev 140 (1965), pp. A1133–A1138.
  • A.D. Becke and E.R. Johnson, A simple effective potential for exchange. J. Chem. Phys. 24 (2006), pp. 221101–4.
  • G.K. Madsen and D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun 175 (2006), pp. 67–71.
  • A. Otero-de-la-Roza, D. Abbasi-Pérez and V. Luaña, Gibbs2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun 182 (2011), pp. 2232–2248.
  • A. Otero-de-la-Roza and V. Luaña, Gibbs2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data. Comput. Phys. Commun 182 (2011), pp. 1708–1720.
  • A. Togo and I. Tanaka, First principles phonon calculations in materials science. Scr. Mater 108 (2015), pp. 1–5.
  • K. Momma and F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr 44 (2011), pp. 1272–1276.
  • C.G. Broyden, The convergence of a class of double-rank minimization algorithms: 2. The new algorithm. IMA J. Appl. Math 6 (1970), pp. 222–231.
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U. S. A 30 (1944), pp. 244.
  • S.S. Essaoud and A.S. Jbara, First-principles calculation of magnetic, structural, dynamic, electronic, elastic, thermodynamic and thermoelectric properties of Co2ZrZ (Z= Al, Si) Heusler alloys. J. Magn. Magn. Mater 531 (2021), pp. 167984.
  • S. Saad Essaoud. Les composés à base de manganèse: investigation théorique des propriétés structurales électroniques et magnétiques, 2020.
  • G.A. Kourouklis, A. Jayaraman, G.P. Espinosa and A.S. Cooper, High-pressure Raman study of CsVO3 and pressure-induced phase transitions. J. Raman Spectrosc 22 (1991), pp. 57–60.
  • A. Otero-de-la-Roza, E.R. Johnson and V. Luaña, Critic2: A program for real-space analysis of quantum chemical interactions in solids. Comput. Phys. Commun 185 (2014), pp. 1007–1018.
  • C.F. Matta and R.J. Boyd, An introduction to the quantum theory of atoms in molecules, In The Quantum Theory of Atoms in Molecules: From Solid State to DNA and Drug Design, Matta Chérif F., Boyd Russell J., ed., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007. pp. 1–34.
  • R.F. Bader and H. Essén, The characterization of atomic interactions. J. Chem. Phys 80 (1984), pp. 1943–1960.
  • Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, New York, 1994.
  • R.F.W. Bader, T.T. Nguyen-Dang and Y. Tal, A topological theory of molecular structure. Rep. Prog. Phys 44 (1981), pp. 893.
  • C.F. Matta, Hydrogen–hydrogen bonding: The non-electrostatic limit of closed-shell interaction between two hydro, In Hydrog. Bond. Insights, Grabowski Sławomir J., eds., Springer, 2006. pp. 337–375.
  • E. Espinosa, I. Alkorta, J. Elguero and E. Molins, From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–Hċ F–Y systems. J. Chem. Phys 117 (2002), pp. 5529–5542.
  • R. Saniz, L.-H. Ye, T. Shishidou and A.J. Freeman, Structural, electronic, and optical properties of NiAl 3: first-principles calculations. Phys. Rev. B 74 (2006), pp. 014209.
  • Q.-J. Liu, Z.-T. Liu, L.-P. Feng and H. Tian, First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and α-quartz GeO2. Solid State Sci. 12 (2010), pp. 1748–1755.
  • A.S. Jbara, Z. Othaman, H.A. Aliabad and M.A. Saeed, Electronic and optical properties of γ-and θ-alumina by first principle calculations. Adv. Sci. Eng. Med 9 (2017), pp. 287–293.
  • A.S. Jbara, J. Munir, B.U. Haq and M.A. Saeed, Density functional theory study of mixed halide influence on structures and optoelectronic attributes of CsPb(I/Br)3. Appl. Opt 59 (2020), pp. 3751–3759.
  • C. Ambrosch-Draxl and J.O. Sofo, Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput. Phys. Commun 175 (2006), pp. 1–14.
  • A.T. Petit and P.L. Dulong, Recherches de la theorie de la chaleur. Ann Chim Phys 10 (1819), pp. 395–413.
  • G.A. Slack, Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids 34 (1973), pp. 321–335.
  • M. Sajjad and N. Singh, The impact of electron–phonon coupling on the figure of merit of Nb2SiTe4 and Nb2GeTe4 ternary monolayers. Phys. Chem. Chem. Phys 23 (2021), pp. 15613–15619.
  • S.S. Nair, M. Sajjad and N. Singh, Theoretical prediction and thermal transport properties of novel monolayer TlPt2Se3. Adv. Theory Simul (23 February 2022.), pp. 2200061). doi: https://doi.org/10.1002/adts.202200061.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.