269
Views
9
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Insights of electronic structures, mechanical properties and thermal conductivities of TM5SiB2 (TM=V, Nb, and Ta) MAB phases

, , , &
Pages 1628-1649 | Received 21 Dec 2021, Accepted 23 Mar 2022, Published online: 04 Apr 2022

References

  • Y. Pan, Y. Lin, H. Wang and C. Zhang, Vacancy induced brittle-to-ductile transition of Nb5Si3 alloy from first-principles. Mater. Des 86 (2015), pp. 259–265.
  • J.H. Yan, J.J. Xu, Y. Wang and L.F. Liu, Preparation of agglomerated powders for air plasma spraying MoSi2coating. Ceram. Int 41 (2015), pp. 10547–10556.
  • X. Tao, H. Chen, X. Tong, Y. Ouyang, P. Jund and J.C. Tedenac, Structural, electronic and elastic properties of V5Si3phases from first-principles calculations. Comput. Mater. Sci 53 (2012), pp. 169–174.
  • L. Zhang, K. Pan, J. Wang and J. Lin, Spark plasma sintering synthesis of intermetallic T2in the Mo-Si-B system. Adv. Powder Technol 24 (2014), pp. 913–920.
  • D.M.P. Junior, C.A. Nunes, G.C. Coelho and F. Ferreira, Liquidus projection of the Nb-Si-B system in the Nb-rich region. Intermetallics 11 (2003), pp. 251–255.
  • E.T. Louis, Transition Metal Carbides and Nitrides, Academic Press, New York, 1971.
  • X. Wang, L. Bao and Y. Wang, Explorations of electronic, elastic and thermal properties of tetragonal TM4N3 (TM = V, Nb and Ta) nitrides. Mater. Today Commun 26 (2020), pp. 101723.
  • S.K.R. Patil, N.S. Mangale, S.V. Khare and S. Marsillac, Super hard cubic phases of period VI transition metal nitrides: first principles investigation. Thin Solid Films 517 (2008), pp. 824–827.
  • N. Sekido, R. Sakidja and J.H. Perepezko, Nucleation of (Mo) precipitates on dislocations During annealing of a Mo-rich Mo5SiB2 phase. O. P. L 842 (2004), pp. 35.
  • R. Sakidja and J.H. Perepezko, Alloying and microstructure stability in the high-temperature Mo–Si–B system. J. Nucl. Mater 366 (2007), pp. 407–416.
  • B.P. Bewlay, Ultrahigh-temperature Nb-silicide-based composites. MRS Bull. 28 (2003), pp. 646–653.
  • J.H. Schneibel, R.O. Ritchie, J.J. Kruzic and P.P. Tottorelli, Oxidation-resistant coatings for ultra-high-temperature refractory Mo-based alloys. J. O. M 62 (2010), pp. 13–19.
  • A.T.A. Meenaatci, R. Rajeswarapalanichamy and K. Iyakutti, Electronic structure, structural stability, mechanical and superconducting properties of group VB nitrides: a first principles study. Solid State Sci. 19 (2013), pp. 36–44.
  • E.J. Zhao, B. Hong, J. Meng and Z.J. Wu, First principles investigation on the ultra- incompressible and hard TaN. J. Comput. Chem 30 (2009), pp. 2358–2363.
  • Y. Zhong, X.H. Xia, F. Shi, J.Y. Zhan, J.P. Tu and H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci 3 (2016), pp. 1500286.
  • P. Djemia, M. Benhamida, K. Bouamama, L. Belliard, D. Faurie and G. Abadias, Structural and elastic properties of ternary metal nitrides TixTa1-xN alloys: first- principles calculations versus experiments. Surf. Coat. Tech 215 (2013), pp. 199–208.
  • S.K. Gupta, S.D. Gupta, H.R. Soni, V. Mankad and P.K. Jha, First-principles studies of the superconductivity and vibrational properties of transition-metal nitrides TMN (TM =Ti, V, and Cr). Mater. Chem. Phys 143 (2014), pp. 503–513.
  • G.S. Gautam and K.C.H. Kumar, Elastic, thermochemical and thermophysical properties of rock salt-type transition metal carbides and nitrides: a first principles study. J. Alloys Compd 587 (2014), pp. 380–386.
  • A.J. Wang, S.L. Shang, M.Z. He, Y. Du, L. Chen, R. Zhang, D.L. Chen, B.B. Fan, F.Y. Meng and Z.K. Liu, Temperature-dependent elastic stiffness constants of fcc-based metal nitrides from first-principles calculations. J. Mater. Sci 49 (2014), pp. 424–432.
  • P.F. Guan, C.Y. Wang and Y. Tao, Electronic structure and physical properties of ScN in pressure: density-functional theory calculations. Chin. Phys. B 17 (2008), pp. 3040–3053.
  • G. Kresse and J. Hafner, Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys-Condens. Mat 40 (1994), pp. 8245.
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, S.J. Clark and M.C. Payne, First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Conden.Matter 14 (2002), pp. 2717–2744.
  • Y. Pan and W. M, Guan probing the balance between ductility and strength: transition metal silicides. Phys. Chem. Chem. Phys 19 (2017), pp. 9427–19433.
  • K. Hagihara, H. Araki, T. Ikenishi and T. Nakano, Creep-deformation behavior of (Mo0.85Nb0.15) Si2 lamellar-structured C40/C11b two-phase crystals. Acta Mater. 107 (2016), pp. 196–212.
  • K. Tanaka, K. Nawata, H. Inui, M. Yamaguchi and M. Koiwa, Refinement of crystallographic parameters in transition metal disilicides with the C11b, C40 and C54 structures. Intermetallics 9 (2001), pp. 603–607.
  • G. Hasemann, C. Harris and J.H. Perepezko, Coating reactions on vanadium and V-Si-B Alloys during Powder Pack-Cementation. Materials 18 (2020), pp. 4099.
  • Y. Pan and W.M. Guan, Exploring the structural stability and mechanical properties of TM5SiB2 ternary silicides. Ceram. Int 44 (2018), pp. 9893–9898.
  • L. Zhang, K. Pan and W. Du, Intrinsic brittleness of Mo5SiB2 and alloying effect on ductility studied by first-principles calculations. Intermetallics 50 (2014), pp. 79–85.
  • W. Bao, D. Liu, P. Li and Y. Duan, Structural properties, elastic anisotropies and thermal conductivities of tetragonal LnB2C2 (Ln =Rare Earth) compounds from first-principles calculations. Ceram. Int 45 (2019), pp. 1857–1867.
  • R.Y. Li and Y.H. Duan, Anisotropic elastic properties of MB (M =Cr, Mo, W) monoborides: a first-principles investigation. Philos. Mag 96 (2016), pp. 972–990.
  • G. Ottonello, B. Civalleri and J. Ganguly, Thermophysical properties of the α–β–γ polymorphs of Mg2SiO4: a computational study. Phys. Chem. Miner 36 (2009), pp. 87–106.
  • M.Z. Rahaman and M.A. Rahman, ThCr2Si2-type Ru-based superconductors LaRu2M2 (M= P and As): An ab-initio investigation[J]. J. Alloys Compd. 695 (2017), pp. 2827–2834.
  • M. Rahaman and M.A. Islam, A theoretical investigation on the physical properties of SrPd2Sb2 superconductor. J. Supercond. Novel Magn. 34(4) (2021), pp. 1133–1139.
  • A.C. Yang, L. Bao and M. Peng, Explorations of elastic anisotropies and thermal properties of the hexagonal TMSi2 (TM= Cr, Mo, W) silicides from first-principles calculations. Mater. Today Commun 27 (2021), pp. 102474.
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index. Phys. Rev. Lett 101 (2008), pp. 055504.
  • D.H. Chung, W.R. Buessem and F.W. Vahldiek, Anisotropy in Single Crystal Refractory Compounds, Plenum, New York, 1968. 328.
  • H. Ozisik, E. Deligoz, K. Colakoglu and G. Surucu, Structural and mechanical stability of rare-earth diborides. Chin. Phys. B 22 (2013), pp. 046202.
  • W. Bao, D. Liu and Y. Duan, A first-principles prediction of anisotropic elasticity and thermal properties of potential superhard WB3. Ceram. Int 44 (2018), pp. 14053–14062.
  • S. Chen, Y. Sun, Y.H. Duan, B. Huang and M.J. Peng, Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first- principles calculations. J. Alloy. Compd 630 (2015), pp. 202–208.
  • K. Tanaka, I. Sato, T. Hirosawa, K. Kurosaki, H. Muta and S. Yamanaka, Thermal conductivity of BaPuO3 at temperatures from 300 to 1500 K. J. Nucl. Mater 414 (2011), pp. 316–319.
  • S. Chen, Y. Sun, Y.H. Duan, B. Huang and M.J. Peng, Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first- principles calculations. J. Alloys. Compd 630 (2015), pp. 202–208.
  • S. Li, W. Sun and Y. Luo, Pushing the limit of thermal conductivity of MAX borides and MABs. J. Mater. Sci. Technol 97 (2021), pp. 87–106.
  • D.R. Clarke and C.G. Levi, Materials design for the next generation thermal barrier coatings. Annu. Rev. Mater. Res 33 (2003), pp. 383–417.
  • D.G. Cahill, S.K. Watson and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46 (1992), pp. 6131–6140.
  • D.G. Cahill and R.O. Pohl, Lattice vibrations and heat transport in crystals and glasses. Annu. Rev. Phys. Chem 39 (1988), pp. 93–121.
  • C. Dhakal, S. Aryal, R. Sakidja and W. Ching, Approximate lattice thermal conductivity of MAX phases at high temperature. J. Eur. Ceram. Soc 35 (2015), pp. 3203–3212.
  • J. Feng, B. Xiao, C.L. Wan, Z.X. Qu, Z.C. Huang, J.C. Chen, R. Zhou and W. Pan, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore. Acta Mater. 59 (2011), pp. 1742–1760.
  • J. Feng, B. Xiao, R. Zhou, W. Pan and D.R. Clarke, Anisotropic elastic and thermal properties of the double perovskite slab-rock salt layer Ln2SrAl2O7 (Ln= La, Nd, Sm, Eu, Gd or Dy) natural superlattice structure. Acta Mater. 60 (2012), pp. 3380–3392.
  • D.T. Morelli and G.A. Slack, High Lattice Thermal Conductivity Solids, in High Thermal Conductivity Materials, S.L. Shindé, J.S. Goela, ed., Springer, 2006. pp. 37–68.
  • F. Arab, F.A. Sahraoui, K. Haddadi, A. Bouhemadou and L. Louail, Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN2: an ab initio study. Phase Transit. 89 (2016), pp. 480–513.
  • C.L. Julian, Theory of heat conduction in rare-gas crystals. Phys. Rev 137 (1965), pp. A128.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.