107
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Solid-state amorphization of gold and silicon bilayer films by annealing

ORCID Icon
Pages 1446-1460 | Received 17 Jan 2022, Accepted 02 May 2022, Published online: 30 May 2022

References

  • J.H. Li, Y. Dai, Y.Y. Cui and B.X. Liu, Atomistic theory for predicting the binary metallic glass formation. Mater. Sci. Eng. R 72 (2011), pp. 1–28.
  • W. Klement Jun, R.H. Willens and P. Duwez, Non-crystalline structure in solidified Gold-Silicon alloys. Nature 187 (1960), pp. 869–870. DOI:10.1038/187869b0.
  • H. Okamoto and T.B. Massalski, The Au−Si (gold-silicon) system. bull. Alloy Phase Diagrams 4 (1983), pp. 190–198.
  • J. Safarian, L. Kolbeinsen and M. Tangstad, Liquidus of silicon Binary systems. Met. Mater Trans. B 42 (2011), pp. 852–874. DOI: 10.1007/s11663-011-9507-4.
  • H.S. Chen and D. Turnbull, Thermal properties of gold-Silicon Binary alloy near the eutectic composition. J. Appl. Phys 38 (1967), pp. 3646–3650. DOI:10.1063/1.1710186.
  • R.R. Chromik, L. Zavalij, M.D. Johnson and E.J. Cotts, Calorimetric investigation of the formation of metastable silicides in Au/a-Si thin film multilayers. J. Appl. Phys 91 (2002), pp. 8992–8998.
  • G.A. Andersen, J.L. Bestel, A.A. Johnson and B. Post, Eutectic decomposition in the Gold-Silicon system. Mater. Sci. Eng 7 (1971), pp. 83–90. DOI:10.1016/0025-5416(71)90027-9.
  • C. Suryanarayana and T.R. Anantharaman, On the crystal structure of a non-equilibrium phase in the gold-silicon system. Mater. Sci. Eng 13 (1974), pp. 73–81.
  • K. Oura and T. Hanawa, LEED-AES study of the Au-Si(100) system. Surf. Sci 82 (1979), pp. 202–214.
  • H.L. Gaigher and N.G. Van Der Berg, The structure of gold silicide in thin Au/Si films. Thin Sold Films 68 (1980), pp. 373–379.
  • W.C.A.N. Ceelen, B. Moest, M. de Ridder, L.J. van IJzendoorn, A.W. Denier van der Gon and H.H. Brongersma, Ultrathin Au layers on Si(100): surface silicide formation at room temperature. Appl. Surf. Sci 134 (1998), pp. 87–94.
  • J.F. Chang, T.F. Young, Y.L. Yang, H.Y. Ueng and T.C. Chang, Silicide formation of Au thin films on (100) Si during annealing. Mater. Chem. Phys 83 (2004), pp. 199–203. DOI:10.1016/S0254-0584(03)00240-2.
  • Y. Hoshino, Y. Kitsudo, M. Iwami and Y. Kido, The structure and growth process of Au/Si(111) analyzed by high-resolution ion scattering coupled with photoelectron spectroscopy. Surf. Sci 602 (2008), pp. 2089–2095.
  • A.K. Green and E. Bauer, Formation, structure, and orientation of gold silicide on gold surfaces. J. Appl. Phys 47 (1976), pp. 1284–1291. doi:10.1063/1.322827.
  • E. Landree, D. Grozea, C. Collazo-Davila and L.D. Marks, UHV high-resolution electron microscopy and chemical analysis of room-temperature Au deposition on Si(001)−2×1. Phys. Rev. B 55 (1997), pp. 7910–7916.
  • K. Okuno, T. Ito, M. Iwami and A. Hiraki, Presence of critical Au-film thickness for room temperature interfacial reaction between Au(film) and Si(crystal substrate). Sol. Stat. Com 34 (1980), pp. 493–497.
  • T. Narusawa, W.M. Gibson and A. Hiraki, Initial stage of room-temperature metal-silicide formation studied by high-energy He+-ion scattering. Phys. Rev. B 24 (1981), pp. 4835–4838.
  • A. Hiraki, M.-A. Nicolet and J.W. Mayer, Low temperature migration of silicon in thin layers of gold and platimum. Appl. Phys. Lett 18 (1971), pp. 178–181.
  • T. Yoshiie, K. Yamakawa and F.E. Fujita, Electrical resistance decay and structural change of Au-Si thin films induced by air. Jpn. J. Appl. Phys 16 (1977), pp. 1109–1113. DOI:10.1143/JJAP.16.1109.
  • A. Hiraki, A model on the mechanism of room temperature interfacial intermixing reaction in various metal-semiconductor couples: what triggers the reaction? J. Electrochem. Soc 127 (1980), pp. 2662–2665.
  • S. Chakraborty, J. Kamila, B. Rout, B. Satpati, P.V. Satyam, B. Sundaravel and B.N. Dev, Shape variation in epitaxial microstructures of gold silicide grown on Br-passivated Si(1 1 1) surfaces. Surf. Sci 549 (2004), pp. 149–156.
  • Y. Haruyama, K. Kanda and S. Matsui, Electronic and geometric structures of the Au–Si(1 0 0) surface observed by photoemission spectroscopy and LEED. J. Elect. Spectro. Relat. Phenom 156–158 (2007), pp. 463–466.
  • T.F. Young, J.F. Chang and H.Y. Ueng, Study on annealing effects of Au thin films on Si. Thin Solid Film 322 (1998), pp. 319–322.
  • A. Hiraki and M. Iwami, Electronic structure of thin gold film deposited on silicon substrate studied by auger electron and X-ray. Japan J. Appl. Phys 2(pt. 2) (1974), pp. 749–752.
  • N. Popović, T. Nenadović, Ž Bogdanov, M. Milić and R. Petrović, Low temperature diffusion effects on microstructural changes in thick gold films on silicon. Thin Solid Film 193/194 (1990), pp. 453–462.
  • H. Miyake, S. Ye and M. Osawa, Electroless deposition of gold thin films on silicon for surface-enhanced infrared spectroelectrochemistry. Electrochem. Commun 4 (2002), pp. 973–977.
  • M. Wölz, Y.L. Huang, M. Seibt and S.C. Erwin, Epitaxial growth of gold on Si(001). Surf. Sci 624 (2014), pp. 15–20.
  • L. Hultman, A. Robertsson and H.T.G. Hentzell, Crystallization of amorphous silicon during thin-film gold reaction. J. Appl. Phys 62 (1987), pp. 3647–3655. doi:10.1063/1.339244.
  • M. Aono, H. Takiguchi, T. Endo, Y. Okamoto, H. Miyazaki, J. Morimoto, N. Kitazawa and Y. Watanabe, Metal induced crystallization of amorphous silicon using layer-by-layer technique with gold ultra thin layer, 35th IEEE photovoltaic specialist conf. 2010, 3654–3659. DOI: 10.1109/PVSC.2010.5614456
  • S.M. Heald and Z. Tan, Interfacial reaction in a-Si/Au and a-Si/Cu thin film bilayers. Jpn. J. Appl. Phys 32(32-2 ) (1993), pp. 386–390.
  • A.K. Srivastava, P. Tiwari and R.V. Nandedkar, TEM studies on the formation of nano crystallites of Si by metal induced crystallization. Solid State Com 137 (2006), pp. 400–404.
  • F.A. Quli and J. Singh, Transmission electron microscopy studies of metal-induced crystallization of amorphous silicon. Mater. Sci. Engno. B67 (1999), pp. 139–144.
  • M. Palumbo and L. Battezzati, Thermodynamics and kinetics of metallic amorphous phases in the framework of the CALPHAD approach. Comp. Coupl. Phase Diagram. Thermochem 32 (2008), pp. 295–314.
  • P. Roura, J. Farjas and P. Roca i Cabarrocas, Quantification of the bond-angle dispersion by Raman spectroscopy and the strain energy of amorphous silicon. J. Appl. Phys 104 (2008), pp. 073521 1–7. DOI:10.1063/1.2990767
  • H.P. Murbach and H. Wilman, The origin of stress in metal layers condensed from the vapour in high vacuum. Proc. Phys. Soc. B 66 (1953), pp. 905–911.
  • L.E. Murr, Interfacial phenomena in metals and alloys. addison-wesley Pub. Co. Advanced Book Program (1975), p. 131.
  • B. Zhao, L. Shvindlerman and G. Gottstein, On the orientation dependence of grain boundary triple line energy in Cu. Int. J. Mater. Res. (Formerly Z. Metallkd 105 (2014), pp. 1151–1158. DOI:10.3139/146.111138.
  • G. Kaptay, A coherent set of model equations for various surface and interface energies in systems with liquid and solid metals and alloys. Adv. Coll. Int. Sci 283 (2020), pp. 102212 1–34. DOI:10.1016/j.cis.2020.102212.
  • G. Kaptay, The chemical (not mechanical) paradigm of thermodynamics of colloid and interface science. Adv. Colloid Interface Sci 256 (2018), pp. 163–192. DOI.10.1016/j.cis.2018.04.007.
  • S. Hong and M.H. Yoo, Surface energy anisotropy of FePt nanoparticles. J. Appl. Phys 97 (2005) pp. 084315 1–4.
  • M.V. Akdeniz and A.O. Mekhrabov, Size dependent stability and surface energy of amorphous FePt nanoalloy. J. Alloy. Comp 788 (2019), pp. 787–798. DOI:10.1016/j.jallcom.2019.02.271.
  • B.P. Coman and V.N. Juzevych, Internal mechanical stresses and the thermodynamic and adhesion parameters of the metal condensate–single-crystal silicon system. Phys. Solid State 54 (2012), pp. 1335–1341.
  • K.L. Chopa. Thin Film Phenomena, McGraw-Hill Inc (1969) Chap. 5.
  • Q. Jiang, S. Zhang and M. Zhao, Size-dependent melting point of noble metals. Mater. Chem. Phys 82 (2003), pp. 225–227.
  • S. Pogatscher, D. Leutenegger, J.E.K. Schawe, P.J. Uggowitzer and J.F.L. Löffler, Solid–solid phase transitions via melting in metals. Nature Com 7 (2016), p. 11113. DOI:10.1038/ncomms11113.
  • Y. Su, X.D. Wang, Q. Su, G. Du, Y. Ren, K. Ståhl, Q. Cao, D. Zhang and J.Z. Jiang, Solid-solid phase transition via the liquid in a Pd43Cu27Ni10P20 bulk metallic glass under conventional conditions. J. Alloy. Compound 859 (2021), p. 157802. DOI:10.1016/j.jallcom.2020.157802.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.