123
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Magnetic properties of the ternary FeCoxNi1−x alloy: Monte Carlo simulations

, , , , &
Pages 1725-1738 | Received 28 Nov 2021, Accepted 15 Apr 2022, Published online: 30 May 2022

References

  • J.M. Silveyra, E. Ferrara, D.L. Huber and T.C. Monson, Soft magnetic materials for a suitainable and electrified world. Science 362 (2018), pp. eaao0195.
  • R.S. Sundar and S.C. Deevi, Soft magnetic FeCo alloys: alloy development, processing, and properties. Int. Mater. Rev 50 (2005), pp. 157–192.
  • M.A. Milayaev, N.S. Bannikova, L.I. Naumova, V.V. Proglyad, E.I. Patrakov, N.P. Glazunov and V.V. Ustinov, Effective Co-rich ternary CoFeNi alloys for spintronics application. J. Alloys Compd 854 (2020), pp. 157171.
  • X. Li, J. Xiang, X. Zhang, H. Li, J. Yang, Y. Zhang, K. Zhang and Y. Chu, Electrospun FeCo nanoparticles encapsulated in N-doped carbón nanofibres as self-supporting flexible anodes for lithium-ion batteries. J. Alloys Compd 873 (2021), pp. 159703.
  • A.L. Kozlovskiy, I.E. Kenzhina and M.V. Zdorovets, FeCo-Fe2CoO4/Co3O4 nanocomposites: pahse transformations as a result of termal annealing and practical application in catalysis. Ceram. Int 46 (2020), pp. 10262–10269.
  • X. Cui, P. Ren, D. Deng, J. Deng and X. Bao, Single layer graphene encapsulating non-precious metals as hight-performance electrocatalysts foe wáter oxidation. Energy Environ. Sci 9 (2016), pp. 123–129.
  • N. Mansouri, N.B. Cherief, E. Chainet, F. Charlot, T. Encinas, S. Boudinar, B. Benfedda, L. Hamadou and A. Kadri, Electrodeposition of equiatomic FeNi and FeCo nanowires: structural and magnetic properties. J. Magn. Magn. Mater 493 (2020), pp. 165746.
  • K. Akedo, T. Ishizaki and K. Yatsugi, Structural and magnetic properties of size-controlled Fe–Ni nanoparticles synthesized by diffusing Fe atoms into preformed Ni nanoparticles. J. Nanoparticle Res 23 (2021), pp. 1–12.
  • E.Y. Kaniukov, A.E. Shumskaya, A.L. Kozlovskiy, M.V. Zdorovets, A.V. Trukhanov, T.I. Zubar, D.I. Tichkevich, D.A. Vinnik, D.R. Khairetdinova, S.A. Evstigneeva, V.S. Rusakov, B.Z. Rameev and L.V. Panina, Structure and magnetic properties of FeCo nanotubes obtained in pores of ion track templates. Nano-Struct. Nano-Objects 26 (2021), pp. 100691.
  • A.E. Shumskaya, A.L. Kozlovskiy, M.V. Zdorovets, S.A. Evstigneeva, A.V. Trukhanov, D.A. Vinnik, E.Y. Kaniukov and L.V. Panina, Correlation between structural and magnetic properties of FeNi nanotubes with different lengths. J. Alloys Compd 810 (2019), pp. 151874.
  • X. Gu, Z. Liu, M. Li, J. Tian and L. Feng, Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction. Appl. Catal. B 297 (2021), pp. 120462.
  • X. Wua, L. Hea and X. Wang, Enchanced oygen evolution reaction performance of synergistic effect of TiO2/Ti3C2/FeNi LDH. Ceram. Int 47 (2021), pp. 25755–25762.
  • S. Fang, Y. Wang, L. Chen, Z. Lu, Z. Cai, C. Fang, Z. Zhao, H. Ma and X. Jia, The effect of pressure on synthetic diamond crystals at high temperatures and pressures in an Fe/Ni catalyst system. Cryst. Eng. Comm 23 (2021), pp. 1406–1414.
  • G. Li, D. Yu, J. Song, F. Hu, L. Li and S. Peng, FeNi nanoparticles encapsulated in Nitrogen-doped carbon frame for efficient and stable Al-air batteries. Mater. Lett 296 (2021), pp. 129890.
  • D. Tuvshin, T. Ochirkhuyag, S.C. Hong and D. Odkhuu, First-principles prediction of rare-earth free permanent magnet: FeNi with enhanced magnetic anisotropy and stability through interstitial boron. AIP. Adv. 11 (2021), pp. 015138.
  • L. Zhang, Z. Wang and Y. Xu, Superior high-temperature magnetic softness for Al-doped FeCo-based nanocrystalline alloys. J. Non. Cryst. Solids. 481 (2018), pp. 148–151.
  • P. Murugaiyan, A. Abhinav, R. Verma, A.K. Panda, A. Mitra and S. Baysakh, Influence of Al addition on structural, crystallization and soft magnetic properties of DC Joule annealed FeCo based nanocrystalline alloys. J. Magn. Magn. Mater 448 (2018), pp. 66–74.
  • K.J. Miller, A. Colletti, P.J. Papi and M.E. McHenry, Fe-Co-Cr nanocomposites for applcation in self-regulated rf heating. Int. J. App. Phys 107 (2010), pp. 09A313.
  • F. Yang, H. Chen, D. Liu, P. Xiong, W. Li and X. Chen, The microstructure and magnetic properties of FeCo@SiO2 core-shell nanoparticles synthesized by using a solution method. J. Alloys Compd 728 (2017), pp. 1153–1156.
  • H.M. Sánchez, L.E.Z. Alfonso, J.S.T. Hernandez and G.A.P. Alcázar, Evidence of exchange coupling in -MnAlC/FeCo system. J. Magn. Magn. Mater 473 (2019), pp. 221–227.
  • M. Koike, Y. Hisada, L. Wang, D. Li, H. Watanabe, Y. Nakagawa and K. Tomishige, High catalytic activity of Co-Fe/α-Al2O3 in the steam reforming of toluene in the presence of hydrogen. Appl. Catal. B-Environ 140 (2013), pp. 652–662.
  • F.Y. Qiu, Y.J. Wang, Y.P. Wang, L. Li, G. Liu, C. Yan, L.F. Jiao and H.T. Yuan, Dehydrogenation of ammonia borane catalyzed by in situ synthesized Fe–Co nano-alloy in aqueous solution. Catal. Today 170 (2011), pp. 64–68.
  • L. Wang, Y. Hisada, M. Koike, D. Li, H. Watanabe, Y. Nakagawa and K. Tomishige, Catalyst property of Co–Fe alloy particles in the steam reforming of biomass tar and toluene. Appl. Catal. B-Environ 121 (2012), pp. 95–104.
  • Y. Cheng, G. Ji, Z. Li, H. Lv, W. Liu, Y. Zhao, J. Cao and Y. Du, Facile synthesis of FeCo alloys with excellent microwave absorption in the whole Ku-band: effect of Fe/Co atomic ratio. J. Alloys Compd 704 (2017), pp. 289–295.
  • F.F. Barbosa, S.B.C. Pergher and T.P. Braga, Synthesis of highly stable FeCo alloy encapsulated in organized carbon from ethylbenzene using H2, CH4, C2H4 generated in situ. J. Alloys Compd 772 (2019), pp. 625–636.
  • H.L. Bouali, F.Z. Bentayeb, S. Louidi, X. Guo, S. Tria, J.J. Suñol and L. Escoda, X-ray line profile analysis of the ball-milled Fe–30Co alloy. Adv. Powder Technol 24 (2013), pp. 168–174.
  • R. Satthawong, N. Koizumi, C. Song and P. Prasassarakich, Bimetallic Fe–Co catalysts for CO2 hydrogenation to higher hydrocarbons. J. CO2 Util. 3 (2013), pp. 102.
  • D. Kim, J. Kim, J. Lee, M.K. Kang, S. Kim, S.H. Park, Y. Choa and J.H. Lim, Enhanced magnetic properties of FeCo alloys by two-step electroless plating. J. Electrochem. Soc 166 (2019), pp. D131.
  • Y. Yan, J. Guo, J. Li and R. Li, Magnetically exchange coupled MnBi/FeCo thin film composites with enhanced maximum energy products. Mater. Lett 184 (2016), pp. 13–16.
  • X. Xu, Y.K. Hong, J. Park, W. Lee, A.M. Lane and J. Cui, Magnetic self-assembly for the synthesis of magnetically exchange coupled MnBi/Fe–Co composites. J. Solid State Chem 231 (2015), pp. 108–113.
  • E. Paimozd, O. Mirzaee and M. Tajally, The role of FeCo and FeCoCr nanowires array on the formation of single phase bi-magnets. J. Magn. Magn. Mater 523 (2021), pp. 167582.
  • D.L. Peng, Y. Chen, H. She, R. Katoh and K. Sumiyama, Preparation and magnetic characteristics of size-monodispersed Fe–Co alloy cluster assemblies. J. Alloys Compd 469 (2009), pp. 276–281.
  • P.S. Yuan, H.Q. Wu, H.Y. Xu, D.M. Xu, Y.J. Cao and X.W. Wei, Synthesis, characterization and electrocatalytic properties of FeCo alloy nanoparticles supported on carbon nanotubes. Mater. Chem. Phys 105 (2007), pp. 391–394.
  • S.D. Jesús, A.M.B. Miró, C.A.C. Escobedo, G.T. Villaseñor and P.V. Serna, Structural analysis and magnetic Properties of FeCo Alloys obtained by mechanical alloying. J. Metall 2016 (2016), pp. 1–8.
  • A.N. Popova, Y.A. Zaharov and V.M. Pugachev, Chemical synthesis, structure and magnetic properties of nanocrystalline Fe-Co alloys. Mater. Lett 74 (2012), pp. 173–175.
  • M. Abbas, M.N. Islam, B.P. Rao, T. Ogawa, M. Takahashi and C. Kim, One-pot synthesis of high magnetization air-stable FeCo nanoparticles by modified polyol method. Mater. Lett 91 (2013), pp. 326–329.
  • N. Maaouni, Z. Fadil, A. Mhirech, B. Kabouchi, L. Bahmad and W.O. Benomar, Compensation behavior of an anti-ferrimagnetic core-shell nanotube like-structure: Monte Carlo study. Solid State Commun. 321 (2020), pp. 114047.
  • Z. Fadil, N. Maaouni, M. Qajjour, A. Mhirech, B. Kabouchi, L. Bahmad and W.O. Benomar, Blume-Capel model of a nano-stanene like structure with RKKY interactions: Monte Carlo simulations. Phase Transit. 93 (2020), pp. 561–572.
  • Z. Fadil, A. Mhirech, B. Kabouchi, L. Bahmad and W.O. Benomar, Magnetic properties of naphthalene-like nano-structure with RKKY interactions: Monte Carlo simulations. Chin. J. Phys 64 (2020), pp. 295–304.
  • Z. Fadil, A. Mhirech, B. Kabouchi, L. Bahmad and W.O. Benomar, Dilution effects on compensation temperature in borophene core-shell structure: Monte Carlo simulations. Solid State Commun. 316 (2020), pp. 113944.
  • N. Saber, Z. Fadil, A. Mhirech, B. Kabouchi, L. Bahmad and W.O. Benomar, Dilution concentration effects on magnetic properties of three nano-Heusler Ru2MnX (X = Nb, Ta, V) compounds: Monte Carlo study. Int. J. Thermophys 42 (2021), pp. 1–13.
  • C.L. Zou, D.Q. Guo, F. Zhang, J. Meng, H.L. Miao and W. Jiang, Magnetization, the susceptibilities and the hysteresis loops of a borophene structure. Physica E 104 (2018), pp. 138–145.
  • X.S. Wang, F. Zhang, N. Si, J. Meng, Y.L. Zhang and W. Jiang, Unique magnetic and thermodynamic properties of a zigzag graphene nanoribbon. Physica A 527 (2019), pp. 121356.
  • N. Si, F. Zhang, W. Jiang and Y.L. Zhang, Magnetic and thermodynamics properties graphene monolayer with defects. Physica A 510 (2018), pp. 641–648.
  • Z. Fadil, M. Qajjour, A. Mhirech, B. Kabouchi, L. Bahmad and W.O. Benomar, Magnetization and susceptibility behaviors in a bi-layer graphyne structure: A Monte Carlo study. Physica B 578 (2020), pp. 411852.
  • W. Jiang, Y.N. Wang, A.B. Guo, Y.Y. Yang and K.L. Shi, Magnetization plateaus and the susceptibilities of a nano-graphene sandwich-like structure. Carbon. N. Y. 110 (2016), pp. 41–47.
  • N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller and E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys 21 (1953), pp. 1087.
  • T. Sahdane, M. Qajjour, N. Maaouni, A. Mhirech, B. Kabouchi, L. Bahmad and W.O. Benomar, Thermal and magnetic property behaviors of a binary alloy borophene structure: A Monte Carlo study. Mater. Today Commun 25 (2020), pp. 101508.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.