400
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of temperature on the neutron irradiation-induced cavities in tungsten

ORCID Icon, , , , , & ORCID Icon show all
Pages 1665-1683 | Received 31 Mar 2022, Accepted 03 May 2022, Published online: 30 May 2022

References

  • A. Giannattasio, Z. Yao, E. Tarleton and S.G. Roberts, Brittle–ductile transitions in polycrystalline tungsten. Philos. Mag. 90 (2010), pp. 3947–3959. doi:10.1080/14786435.2010.502145.
  • E. Gaganidze, A. Chauhan, H.-C. Schneider, D. Terentyev, G. Borghmans and J. Aktaa, Fracture-mechanical properties of neutron irradiated ITER specification tungsten. J. Nucl. Mater. 547 (2021), pp. 152761. doi:10.1016/j.jnucmat.2020.152761.
  • E. Gaganidze, A. Chauhan, H.-C. Schneider, D. Terentyev, B. Rossaert and J. Aktaa, Effect of irradiation temperature on the fracture-mechanical behaviour of tungsten irradiated to 1 dpa. J. Nucl. Mater. 556 (2021), pp. 153200. doi:10.1016/j.jnucmat.2021.153200.
  • R.C. Rau, R.L. Ladd and J. Moteff, Voids in irradiated tungsten and molybdenum. J. Nucl. Mater. 33 (1969), pp. 324–327. doi:10.1016/0022-3115(69)90029-4.
  • L.K. Keys and J. Moteff, Neutron irradiation and defect recovery of tungsten. J. Nucl. Mater. 34 (1970), pp. 260–280. doi:10.1016/0022-3115(70)90193-5.
  • V.K. Sikka and J. Moteff, Superlattice of voids in neutron-irradiated tungsten. J. Appl. Phys. 43 (1972), pp. 4942–4944. doi:10.1063/1.1661050.
  • V.K. Sikka and J. Moteff, “Rafting” in neutron irradiated tungsten. J. Nucl. Mater. 46 (1973), pp. 217–219. doi:10.1016/0022-3115(73)90139-6.
  • J. Matolich, H. Nahm and J. Moteff, Swelling in neutron irradiated tungsten and tungsten-25 percent rhenium. Scr. Metall. 8 (1974), pp. 837–841. doi:10.1016/0036-9748(74)90304-4.
  • R.K. Williams, F.W. Wiffen, J. Bentley and J.O. Stiegler, Irradiation induced precipitation in tungsten based, W-Re alloys. Metall. Trans. A 14 (1983), pp. 655–666. doi:10.1007/BF02643781.
  • R. Herschitz and D.N. Seidman, Radiation-induced precipitation in fast-neutron irradiated tungsten-rhenium alloys: An atom-probe field-ion microscope study. Nucl. Instrum. Methods Phys. Res., Sect. B 7–8 (1985), pp. 137–142. doi:10.1016/0168-583X(85)90544-0.
  • X. Hu, T. Koyanagi, M. Fukuda, N.A.P.K. Kumar, L.L. Snead, B.D. Wirth and Y. Katoh, Irradiation hardening of pure tungsten exposed to neutron irradiation. J. Nucl. Mater. 480 (2016), pp. 235–243. doi:10.1016/j.jnucmat.2016.08.024.
  • X. Hu, C.M. Parish, K. Wang, T. Koyanagi, B.P. Eftink and Y. Katoh, Transmutation-induced precipitation in tungsten irradiated with a mixed energy neutron spectrum. Acta Mater. 165 (2019), pp. 51–61. doi:10.1016/j.actamat.2018.11.032.
  • T. Koyanagi, N.A.P.K. Kumar, T. Hwang, L.M. Garrison, X. Hu, L.L. Snead and Y. Katoh, Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum. J. Nucl. Mater. 490 (2017), pp. 66–74. doi:10.1016/j.jnucmat.2017.04.010.
  • V.K. Sikka and J. Moteff, Identification of α-Mn crystal structure in neutron irradiated W-Re alloy. Metall. Trans. 5 (1974), pp. 1514–1517. doi:10.1007/BF02646643.
  • T. Tanno, M. Fukuda, S. Nogami and A. Hasegawa, Microstructure development in neutron irradiated tungsten alloys. Mater. Trans. 52 (2011), pp. 1447–1451. doi:10.2320/matertrans.MBW201025.
  • M. Fukuda, T. Tanno, S. Nogami and A. Hasegawa, Effects of Re content and fabrication process on microstructural changes and hardening in neutron irradiated tungsten. Mater. Trans. 53 (2012), pp. 2145–2150. doi:10.2320/matertrans.MBW201110.
  • M. Fukuda, A. Hasegawa, T. Tanno, S. Nogami and H. Kurishita, Property change of advanced tungsten alloys due to neutron irradiation. J. Nucl. Mater. 442 (2013), pp. S273–S276. doi:10.1016/j.jnucmat.2013.03.058.
  • A. Hasegawa, M. Fukuda, T. Tanno and S. Nogami, Neutron irradiation behavior of tungsten. Mater. Trans. 54 (2013), pp. 466–471. doi:10.2320/matertrans.MG201208.
  • M. Fukuda, K. Yabuuchi, S. Nogami, A. Hasegawa and T. Tanaka, Microstructural development of tungsten and tungsten–rhenium alloys due to neutron irradiation in HFIR. J. Nucl. Mater. 455 (2014), pp. 460–463. doi:10.1016/j.jnucmat.2014.08.002.
  • A. Hasegawa, M. Fukuda, S. Nogami and K. Yabuuchi, Neutron irradiation effects on tungsten materials. Fusion Eng. Des. 89 (2014), pp. 1568–1572. doi:10.1016/j.fusengdes.2014.04.035.
  • A. Hasegawa, M. Fukuda, K. Yabuuchi and S. Nogami, Neutron irradiation effects on the microstructural development of tungsten and tungsten alloys. J. Nucl. Mater. 471 (2016), pp. 175–183. doi:10.1016/j.jnucmat.2015.10.047.
  • Y. Nemoto, A. Hasegawa, M. Satou and K. Abe, Microstructural development of neutron irradiated W–Re alloys. J. Nucl. Mater. 283–287 (2000), pp. 1144–1147. doi:10.1016/S0022-3115(00)00290-7.
  • M.R. Gilbert and J.-C. Sublet, Neutron-induced transmutation effects in W and W-alloys in a fusion environment. Nucl. Fusion 51 (2011), pp. 043005. doi:10.1088/0029-5515/51/4/043005.
  • M. Klimenkov, U. Jäntsch, M. Rieth, H.C. Schneider, D.E.J. Armstrong, J. Gibson and S.G. Roberts, Effect of neutron irradiation on the microstructure of tungsten. Nucl. Mater. Energy 9 (2016), pp. 480–483. doi:10.1016/j.nme.2016.09.010.
  • H. Bolt, V. Barabash, G. Federici, J. Linke, A. Loarte, J. Roth and K. Sato, Plasma facing and high heat flux materials – needs for ITER and beyond. J. Nucl. Mater. 307–311 (2002), pp. 43–52. doi:10.1016/S0022-3115(02)01175-3.
  • S.E. Plansee. Available at: https://www.plansee.com/shop/EN/category/Products/Tungsten %20and%20alloys/Sheets/Standard%20quality (accessed April 5, 2018), (n.d.).
  • M. Wirtz, J. Linke, T. Loewenhoff, G. Pintsuk and I. Uytdenhouwen, Thermal shock tests to qualify different tungsten grades as plasma facing material. Phys. Scr. T167 (2016), pp. 014015. doi:10.1088/0031-8949/T167/1/014015.
  • D. Pelowitz, J. Durkee, J. Elson, M. Fensin, M. James, R. Johns, G. McKinney, S. Mashnik, L. Waters and T. Wilcox. MCNPX 2.7. 0 Extensions, Los Alamos National Laboratory. (2011).
  • S.L. Dudarev. DPA Definition and Estimates, (2015). Available at: https://www-amdis.iaea.org/CRP/ IrradiatedTungsten/RCM2/RCM2Presentation-DudarevDPA-2015-09-10.pdf.
  • L.A. Giannuzzi, J.L. Drown, S.R. Brown, R.B. Irwin and F.A. Stevie, Applications of the FIB lift-out technique for TEM specimen preparation. Microsc. Res. Tech. 41 (1998), pp. 285–290. doi:10.1002/(SICI)1097-0029(19980515)41:4<285::AID-JEMT1>3.0.CO;2-Q.
  • Q. Yuan, A. Chauhan, E. Gaganidze and J. Aktaa, In-situ TEM investigations of dislocation loop annealing kinetics in neutron-irradiated 9%Cr RAFM steel. J. Nucl. Mater. 558 (2022), pp. 153365. doi:10.1016/j.jnucmat.2021.153365.
  • T. Malis, S.C. Cheng and R.F. Egerton, EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron. Microsc. Tech. 8 (1988), pp. 193–200. doi:10.1002/jemt.1060080206.
  • D.R.G. Mitchell. Mean Free Path Estimator for Digital Micrograph, (2012). Available at: http://www.dmscripting.com/meanfreepathestimator.html (accessed May 30, 2020).
  • Q. Yuan. Temperature evolution of irradiation defects in fusion structural steels, 2022.
  • G.S. Was, Fundamentals of Radiation Materials Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. doi:10.1007/978-3-540-49472-0.
  • C. Berne, M. Sluiter, Y. Kawazoe and A. Pasturel, Ordering effects in the Re–W and Re–Ta sigma phases. J. Phys.: Condens. Matter 13 (2001), pp. 9433–9443. doi:10.1088/0953-8984/13/42/304.
  • J.S. Wróbel, D. Nguyen-Manh, K.J. Kurzydłowski and S.L. Dudarev, A first-principles model for anomalous segregation in dilute ternary tungsten-rhenium-vacancy alloys. J. Phys.: Condens. Matter 29 (2017), pp. 145403. doi:10.1088/1361-648X/aa5f37.
  • S.I. Golubov and A.v. Barashev. Predictive model for swelling accumulation in austenitic steels under conditions relevant to light water reactor, 2017.
  • M. Dürrschnabel, M. Klimenkov, U. Jäntsch, M. Rieth, H.C. Schneider and D. Terentyev, New insights into microstructure of neutron-irradiated tungsten. Sci. Rep. 11 (2021), pp. 7572. doi:10.1038/s41598-021-86746-6.
  • H. Trinkaus and B.N. Singh, Helium accumulation in metals during irradiation – where do we stand? J. Nucl. Mater. 323 (2003), pp. 229–242. doi:10.1016/j.jnucmat.2003.09.001.
  • C.S. Becquart, C. Domain, U. Sarkar, A. DeBacker and M. Hou, Microstructural evolution of irradiated tungsten: Ab initio parameterisation of an OKMC model. J. Nucl. Mater. 403 (2010), pp. 75–88. doi:10.1016/j.jnucmat.2010.06.003.
  • J. Marian and T.L. Hoang, Modeling fast neutron irradiation damage accumulation in tungsten. J. Nucl. Mater. 429 (2012), pp. 293–297. doi:10.1016/j.jnucmat.2012.06.019.
  • T. Faney and B.D. Wirth, Spatially dependent cluster dynamics modeling of microstructure evolution in low energy helium irradiated tungsten. Modell. Simul. Mater. Sci. Eng. 22 (2014), pp. 065010. doi:10.1088/0965-0393/22/6/065010.
  • B. Burton, The interaction between a dislocation loop and a gas bubble. Philos. Mag. A 52 (1985), pp. 669–688. doi:10.1080/01418618508237655.
  • B.L. Eyre and D.M. Maher, Neutron irradiation damage in molybdenum. Philos. Mag. 24 (1971), pp. 767–797. doi:10.1080/14786437108217049.
  • A. Breidi and S.L. Dudarev, Dislocation dynamics simulation of thermal annealing of a dislocation loop microstructure. J. Nucl. Mater. (2022), pp. 153552. doi:10.1016/j.jnucmat.2022.153552.
  • F. Ferroni, X. Yi, K. Arakawa, S.P. Fitzgerald, P.D. Edmondson and S.G. Roberts, High temperature annealing of ion irradiated tungsten. Acta Mater. 90 (2015), pp. 380–393. doi:10.1016/j.actamat.2015.01.067.
  • X. Hu, T. Koyanagi, M. Fukuda, Y. Katoh, L.L. Snead and B.D. Wirth, Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation. J. Nucl. Mater. 470 (2016), pp. 278–289. doi:10.1016/j.jnucmat.2015.12.040.
  • Q. Yuan, A. Chauhan, E. Gaganidze and J. Aktaa, Dislocation loop coarsening and shape evolution upon annealing neutron-irradiated RAFM steel. J. Nucl. Mater. 558 (2022), pp. 153366. https://doi.org/10.1016/j.jnucmat.2021.153366.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.