265
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Constitutive equation and microstructure analysis of Al0.6CoCrFeNi high entropy alloy during hot deformation

, &
Pages 1684-1707 | Received 22 Dec 2021, Accepted 20 Apr 2022, Published online: 30 May 2022

References

  • J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (2004), pp. 299–303.
  • D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater.. 122 (2017), pp. 448–511.
  • P. Chauhan, S. Chopra and T. Shanmugasundaram, Inter-dependency relationships in high-entropy alloys: phase stability criteria, Adv. Eng. Mater. 21 (2019), pp. 1–9.
  • Z. Li, K.G. Pradeep, Y. Deng, D. Raabe and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature. 534 (2016), pp. 227–230.
  • Y. Qiu, S. Thomas, M.A. Gibson, H.L. Fraser and N. Birbilis, Corrosion of high entropy alloys, npj Mater. Degrad. 1 (2017), pp. 15–21.
  • B. Cantor, I. Chang, P. Knight and A. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng., A. 375–377 (2004), pp. 213–218.
  • S.G. Ma, S.F. Zhang, J.W. Qiao, Z.H. Wang, M.C. Gao, Z.M. Jiao, H.J. Yang and Y. Zhang, Superior high tensile elongation of a single-crystal CoCrFeNiAl0.3 high-entropy alloy by bridgman solidification, Intermetallics. 54 (2014), pp. 104–109.
  • A.V. Kuznetsov, D.G. Shaisultanov, N. Stepanov, G.A. Salishchev and O.N. Senkov, Superplasticity of AlCoCrCuFeNi high entropy alloy, Mater. Sci. Forum. 735 (2012), pp. 146–151.
  • K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving and C.C. Koch, A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures, Mater. Res. Lett.. 2 (2015), pp. 1–9.
  • Y. Ma, J. Hao, J. Jie, Q. Wang and C. Dong, Coherent precipitation and strengthening in a dual-phase AlNi2Co2Fe1.5Cr1.5 high-entropy alloy, Mater. Sci. Eng., A. 764 (2019), pp. 138241.
  • J.C. Rao, H.Y. Diao, V. Ocelík, D. Vainchtein, C. Zhang, C. Kuo, Z. Tang, W. Guo, J.D. Poplawsky, Y. Zhou, P.K. Liaw and J.T.M. De Hosson, Secondary phases in AlxCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal, Acta Mater. 131 (2017), pp. 206–220.
  • W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai and J.W. Yeh, Effects of al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics. 26 (2012), pp. 44–51.
  • F. Tian, L.K. Varga, N. Chen, J. Shen and L. Vitos, Empirical design of single phase high-entropy alloys with high hardness, Intermetallics. 58 (2015), pp. 1–6.
  • W.R. Wang, W.L. Wang and J.W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures, J. Alloys Compd. 589 (2014), pp. 143–152.
  • B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science. 345 (2014), pp. 1153–1158.
  • N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin and G. Salishchev, Effect of cryo-deformation on structure and properties of CoCrFeNiMn high-entropy alloy, Intermetallics. 59 (2015), pp. 8–17.
  • R. Sokkalingam, S. Mishra, S.R. Cheethirala, V. Muthupandi and K. Sivaprasad, Enhanced relative slip distance in gas-tungsten-arc-welded Al0.5CoCrFeNi high-entropy alloy, Metall. Mater. Trans. A. 48 (2017), pp. 3630–3634.
  • J.Y. He, C. Zhu, D.Q. Zhou, W.H. Liu, T.G. Nieh and Z.P. Lu, Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures, Intermetallics. 55 (2014), pp. 9–14.
  • T.S. Reddy, I.S. Wani, T. Bhattacharjee, S.R. Reddy, R. Saha and P.P. Bhattacharjee, Severe plastic deformation driven nanostructure and phase evolution in a Al0.5CoCrFeMnNi dual phase high entropy alloy, Intermetallics. 91 (2017), pp. 150–157.
  • N. Nayan, G. Singh, S.V.S.N. Murty, A.K. Jha, B. Pant, K.M. George and U. Ramamurty, Hot deformation behaviour and microstructure control in AlCrCuNiFeCo high entropy alloy, Intermetallics. 55 (2014), pp. 145–153.
  • Y. Wang, W.Z. Shao, L. Zhen, L. Yang and X.M. Zhang, Flow behavior and microstructures of superalloy 718 during high temperature deformation, Mater. Sci. Eng., A. 497 (2008), pp. 479–486.
  • H. Mirzadeh, J.M. Cabrera and A. Najafizadeh, Constitutive relationships for hot deformation of austenite, Acta Mater.. 59 (2011), pp. 6441–6448.
  • H.J. Mcqueen, S. Yue, N.D. Ryan and E. Fry, Hot working characteristics of steels in austenitic state, J. Mater. Process. Technol. 53 (1995), pp. 293–310.
  • C. Zener and J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys. 15 (1944), pp. 22–32.
  • Z. Ahmed, K. Chadha, R.R. Seelam, D. Shahriari and M. Jahazi, Influence of process parameters on microstructure evolution during hot deformation of a eutectic high entropy alloy (EHEA), Metall. Mater. Trans. A. 51 (2020), pp. 6406–6420.
  • R.R. Eleti, T. Bhattacharjee, L. Zhao, P.P. Bhattacharjee and N. Tsuji, Hot deformation behavior of CoCrFeMnNi fcc high entropy alloy, Mater. Chem. Phys. 210 (2018), pp. 176–186.
  • N.D. Stepanov, D.G. Shaysultanov, N.Y. Yurchenko, S.V. Zherebtsov, A.N. Ladygin, G.A. Salishchev and M.A. Tikhonovsky, High temperature deformation behavior and dynamic recrystallization in CoCrFeNiMn high entropy alloy, Mater. Sci. Eng., A. 636 (2015), pp. 188–195.
  • A. Najafizadeh and J.J. Jonas, Predicting the critical stress for initiation of dynamic recrystallization, ISIJ Int.. 46 (2006), pp. 1679–1684.
  • H.Y. Li, X.F. Wang, J.Y. Duan and J.J. Liu, A modified Johnson Cook model for elevated temperature flow behavior of T24 steel, Mater. Sci. Eng., A. 577 (2013), pp. 138–146.
  • A. He, X.T. Wang, G.L. Xie, X.Y. Yang and H.L. Zhang, Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316Ln stainless steel during hot deformation, J. Iron Steel Res. Int. 22 (2015), pp. 721–729.
  • T. Bhattacharjee, I.S. Wani, S. Sheikh, I.T. Clark, T. Okawa, S. Guo, P.P. Bhattacharjee and N. Tsuji, Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing, Sci. Rep. 8 (2018), pp. 3276.
  • R.R. Seelam, S. Yoshida, P.P. Bhattacharjee, N. Sake and N. Tsuji, Nanostructuring with structural-compositional dual heterogeneities enhances strength-ductility synergy in eutectic high entropy alloy, Sci. Rep. 9 (2019), pp. 11505.
  • P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, J. Peng, P. Hu, Y. Gao, Y. Zhong and P.K. Liaw, Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun. 10 (2019), pp. 1–8.
  • T. Cao, L. Ma, L. Wang, J. Zhou and Y. Xue, High temperature deformation behavior of dual-phase Al0.6CoCrFeNi high-entropy alloys, J. Alloys Compd. 836 (2020), pp. 155305.
  • T. Sakai and J.J. Jonas, Plastic deformation: role of recovery and recrystallization, Encycl. mater. Sci. Technol. (2001), pp. 7079–7084.
  • M.J. Wang, C.Y. Sun, M.W. Fu, Z.L. Liu and L.Y. Qian, Study on the dynamic recrystallization mechanisms of inconel 740 superalloy during hot deformation, J. Alloys Compd. 820 (2020), pp. 153325.
  • N.N. Guo, L. Wang, S.L. Luo, Z.X. Li, R.R. Chen and Q.Y. Su, Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory high-entropy alloy, Mater. Sci. Eng., A. 651 (2016), pp. 698–707.
  • H.T. Jeong, H.K. Park and W.J. Kim, Dynamic recrystallization and hot deformation mechanisms of a eutectic Al0.7CoCrFeMnNi high-entropy alloy, J. Alloys Compd. 871 (2021), pp. 159488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.