742
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Small-scale deformation behaviour of the AlCoCrFeNi2.1 eutectic high entropy alloy

, , , , , & show all
Pages 1708-1724 | Received 18 Jan 2022, Accepted 24 Apr 2022, Published online: 30 May 2022

References

  • E.P. George, D. Raabe and R.O. Ritchie, High-entropy alloys. Nat. Rev. Mater. 4 (2019), pp. 515–534.
  • D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta. Mater. 122 (2017), pp. 448–511.
  • J.W. Yeh, Physical metallurgy of high-entropy alloys. Jom 67 (2015), pp. 2254–2261.
  • Y.F. Ye, Q. Wang, J. Lu, C.T. Liu and Y. Yang, High-entropy alloy: challenges and prospects. Mater. Today 19 (2016), pp. 349–362.
  • J. Yeh, S. Chen, S. Lin, J. Gan, T. Chin, T. Shun, et al., Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater 6 (2004), pp. 299–303.
  • C.J. Tong, Y.L. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, C.H. Tsau, et al., Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36 (2005), pp. 881–893.
  • S.T. Chen, W.Y. Tang, Y.F. Kuo, S.Y. Chen, C.H. Tsau, T.T. Shun, et al., Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys. Mater. Sci. Eng. A 527 (2010), pp. 5818–5825.
  • M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, et al., Fatigue behavior of Al 0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60 (2012), pp. 5723–5734.
  • M.-H. Tsai, C.-W. Wang, C.-W. Tsai, W.-J. Shen, J.-W. Yeh, J.-Y. Gan, et al., Thermal stability and performance of NbSiTaTiZr high-entropy alloy barrier for copper metallization. J. Electrochem. Soc. 158 (2011), pp. H1161.
  • C.J. Tong, M.R. Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, et al., Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 36 (2005), pp. 1263–1271.
  • J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang and H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear 261 (2006), pp. 513–519.
  • C.-Y. Hsu, J.-W. Yeh, S.-K. Chen and T.-T. Shun, Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl. Metall. Mater. Trans. A. Phys. Metall. Mater. Sci. 35 (2004), pp. 1465–1469.
  • P.K. Huang, J.W. Yeh, T.T. Shun and S.K. Chen, Multi-principal-element alloys with improved oxidation and wear resistance for thermal spray coating. Adv. Eng. Mater. 6 (2004), pp. 74–78.
  • O.N. Senkov, J.D. Miller, D.B. Miracle and C. Woodward, Accelerated exploration of multi-principal element alloys for structural applications. Calphad Comput. Coupling Phase Diagrams Thermochem. 50 (2015), pp. 32–48.
  • N.D. Stepanov, N.Y. Yurchenko, E.S. Panina, M.A. Tikhonovsky and S.V. Zherebtsov, Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett. 188 (2017), pp. 162–164.
  • M. Ogura, T. Fukushima, R. Zeller and P.H. Dederichs, Structure of the high-entropy alloy AlxCrFeCoNi: Fcc versus bcc. J. Alloys Compd. 715 (2017), pp. 454–459.
  • N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky and G.A. Salishchev, Effect of carbon content and annealing on structure and hardness of the CoCrFeNiMn-based high entropy alloys. J. Alloys Compd. 687 (2016), pp. 59–71.
  • P.K. Liaw. Radiation Behavior of High-Entropy Alloys for Advanced Reactors Nuclear Energy Enabling Technologies, Project No. 11-3196, Department of Materials Science and Engineering, The University of Tennessee, Knoxvile, TN/2014.
  • J.-W. Yeh, S. Chen, J. Gan, S. Lin and T. Chin, Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35A (2004), pp. 2533–2536.
  • J.B. Pethicai, R. Hutchings and W.C. Oliver, Hardness measurement at penetration depths as small as 20 nm. Philos. Mag. A Phys. Condens. Matter, Struct. Defects Mech. Prop. 48 (1983), pp. 593–606.
  • G.M. Pharr, Measurement of mechanical properties by ultra-low load indentation. Mater. Sci. Eng. A 253 (1998), pp. 151–159.
  • I. Alabd Alhafez, C.J. Ruestes, E.M. Bringa and H.M. Urbassek, Nanoindentation into a high-entropy alloy – An atomistic study. J. Alloys Compd. 803 (2019), pp. 618–624.
  • P.N. Babu, C.S. Becquart and S. Pal, Molecular dynamics simulation-based study of creep–ratcheting behavior of nanocrystalline aluminum. Appl. Nanosci. 11 (2021), pp. 565–581.
  • T. Xiong, W. Yang, S. Zheng, Z. Liu, Y. Lu, R. Zhang, et al., Faceted Kurdjumov-Sachs interface-induced slip continuity in the eutectic high-entropy alloy, AlCoCrFeNi2.1. J Mater Sci Technol. 65 (2021), pp. 216–227.
  • S. Pal, P.N. Babu, B.S.K. Gargeya and C.S. Becquart, Molecular dynamics simulation based investigation of possible enhancement in strength and ductility of nanocrystalline aluminum by CNT reinforcement. Mater Chem. Phys 243 (2020), pp. 122593.
  • M.C. Gao, P.K. Liaw, J.W. Yeh and Y. Zhang, High-Entropy Alloys: Fundamentals and Applications, Springer International Publishing, Switzerland, Cham, 2016.
  • E. Atar, H. Cimenolu and E.S. Kayali, Hardness characterisation of thin Zr(Hf,N) coatings. Surf. Coatings Technol. 162 (2003), pp. 167–173.
  • D.J. Strange and A.K. Varshneya, Finite element simulation of microindentation on aluminum. J. Mater. Sci. 36 (2001), pp. 1943–1949.
  • L.E. Seitzman, Mechanical properties from instrumented indentation: uncertainties due to tip-shape correction. J. Mater. Res. 13 (1998), pp. 2936–2944.
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7 (1992), pp. 1564–1583.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117 (1995), pp. 1–19.
  • D. Farkas and A. Caro, Model interatomic potentials for Fe-Ni-Cr-Co-Al high-entropy alloys. J. Mater. Res. 35 (2020), pp. 3031–3040.
  • D.J. Evans and B.L. Holian, The Nose-Hoover thermostat. J. Chem. Phys. 83 (1985), pp. 4069–4074.
  • K.V. Reddy and S. Pal, Analysis of deformation behaviour of Al–Ni–Co thin film coated aluminium during nano-indentation: a molecular dynamics study. Mol. Simul. 44 (2018), pp. 1393–1401.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18 (2009), pp. 015012.
  • A. Stukowski, V.V. Bulatov and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20 (2012), pp. 085007 (16pp).
  • J.D. Honeycutt and H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91 (1987), pp. 4950–4963.
  • S. Muskeri, V. Hasannaeimi, R. Salloom, M. Sadeghilaridjani and S. Mukherjee, Small-scale mechanical behavior of a eutectic high entropy alloy. Sci. Rep. 10 (2020), pp. 1–12.
  • Y. Lu, X. Gao, L. Jiang, Z. Chen, T. Wang, J. Jie, H. Kang, Y. Zhang, S. Guo, H. Ruan, Y. Zhao, Z. Cao and T. Li, Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range. Acta Mater. 124 (2017), pp. 143–150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.