402
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructure and mechanical properties of Al–Co–Cr–Fe–Ni–(Nb–Ti) high entropy alloys

& ORCID Icon
Pages 1961-1973 | Received 15 Jan 2022, Accepted 10 Jun 2022, Published online: 06 Jul 2022

References

  • K. Cheng, C. Lai, S. Lin and J. Yeh, Structural and mechanical properties of multi-element (AlCrMoTaTiZr)Nx coatings by reactive magnetron sputtering. Thin. Solid Films 519 (2011), pp. 3185–3190. doi:10.1016/j.tsf.2010.11.034.
  • W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen and C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta. Mater. 116 (2016), pp. 332–342. doi:10.1016/j.actamat.2016.06.063.
  • E.P. George, W.A. Curtin and C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta. Mater. 188 (2020), pp. 435–474. doi:10.1016/j.actamat.2019.12.015.
  • C.H. Chang, M.S. Titus and J.W. Yeh, Oxidation behavior between 700 and 1300°C of refractory TiZrNbHfTa high-entropy alloys containing aluminum. Adv. Eng. Mater. 20 (2018), pp. 1–8. doi:10.1002/adem.201700948.
  • C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh and H.C. Shih, Enhancing pitting corrosion resistance of AlxCrFe1.5MnNi0.5 high-entropy alloys by anodic treatment in sulfuric acid. Thin. Solid Films 517 (2008), pp. 1301–1305. doi:10.1016/j.tsf.2008.06.014.
  • J. Chen, X. Zhou, W. Wang, B. Liu, Y. Lv, W. Yang, D. Xu and Y. Liu, A review on fundamental of high entropy alloys with promising high–temperature properties. J. Alloys Compd. 760 (2018), pp. 15–30. doi:10.1016/j.jallcom.2018.05.067.
  • R.K. Mishra and R.R. Shahi, Phase evolution and magnetic characteristics of TiFeNiCr and TiFeNiCrM (M = Mn, Co) high entropy alloys. J. Magn. Magn. Mater. 442 (2017), pp. 218–223. doi:10.1016/j.jmmm.2017.06.124.
  • Y.H. Meng, F.H. Duan, J. Pan and Y. Li, Phase stability of B2-ordered ZrTiHfCuNiFe high entropy alloy. Intermetallics 111 (2019), pp. 106515. doi:10.1016/j.intermet.2019.106515.
  • B. Cantor, I.T.H. Chang, P. Knight and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377 (2004), pp. 213–218. doi:10.1016/j.msea.2003.10.257.
  • J. Yeh, Recent progress in high-entropy alloys. Ann. Chim. Sci. Mat. 31 (2006), pp. 633–648.
  • F.J. Wang, Y. Zhang, G.L. Chen and H.A. Davies, Cooling rate and size effect on the microstructure and mechanical properties of AlCoCrFeNi high entropy alloy. J. Eng. Mater. Techn. 131 (2009), pp. 034501. doi:10.1115/1.3120387.
  • T. Yang, S. Xia, S. Liu, C. Wang, S. Liu, Y. Zhang, J. Xue, S. Yan and Y. Wang, Effects of Al addition on microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloy. Mater. Sci. Eng. A 648 (2015), pp. 15–22. doi:10.1016/j.msea.2015.09.034.
  • Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu and Z. Fu, Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng. A 648 (2015), pp. 217–224. doi:10.1016/j.msea.2015.08.056.
  • Z. Tang, M.C. Gao, H.Y. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw and T. Egami, Aluminum alloying effects on lattice types, microstructures, and mechanical behavior of high-entropy alloys systems. JOM 65 (2013), pp. 1848–1858. doi:10.1007/s11837-013-0776-z.
  • Q. Tang, Y. Huang, H. Cheng, X. Liao, T.G. Langdon and P. Dai, The effect of grain size on the annealing-induced phase transformation in an Al0·3CoCrFeNi high entropy alloy. Mater. Design. 105 (2016), pp. 381–385. doi:10.1016/j.matdes.2016.05.079.
  • W. Chen, Z. Fu, S. Fang, H. Xiao and D. Zhu, Alloying behavior, microstructure and mechanical properties in a FeNiCrCo0.3Al0.7 high entropy alloy. Mater. Design. 51 (2013), pp. 854–860. doi:10.1016/j.matdes.2013.04.061.
  • W.R. Wang, W.L. Wang and J.W. Yeh, Phases, microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys at elevated temperatures. J. Alloy Compd. 589 (2014), pp. 143–152. doi:10.1016/j.jallcom.2013.11.084.
  • Y. Zhou, Y. Zhang, Y. Wang and G. Chen, Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties. Appl. Phys. Lett. 90 (2007), pp. 181904. doi:10.1063/1.2734517.
  • N. Malatji, A.P.I. Popoola, T. Lengopeng and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy. Int. J. Miner. Metall. Mater. 27 (2020), pp. 1332–1340. doi:10.1007/s12613-020-2178-x.
  • W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu and C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics 60 (2015), pp. 1–8. doi:10.1016/j.intermet.2015.01.004.
  • R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2008. doi:10.1017/CBO9780511541285.
  • T.K. Tsao, A.C. Yeh, C.M. Kuo, K. Kakehi, H. Murakami, J.W. Yeh and S.R. Jian, The high temperature tensile and creep behaviors of high entropy superalloy. Sci. Rep. 7 (2017), pp. 12658. doi:10.1038/s41598-017-13026-7.
  • Y.-T. Chen, Y.-J. Chang, H. Murakami, S. Gorsse and A.-C. Yeh, Designing high entropy superalloys for elevated temperature application. Scr. Mater. 187 (2020), pp. 177–182. doi:10.1016/j.scriptamat.2020.06.002.
  • T. Murakumo, T. Kobayashi, Y. Koizumi and H. Harada, Creep behaviour of Ni-base single-crystal superalloys with various γ’ volume fraction. Acta. Mater. 52 (2004), pp. 3737–3744. doi:10.1016/j.actamat.2004.04.028.
  • W.H. Liu, T. Yang and C.T. Liu, Precipitation hardening in CoCrFeNi- based high entropy alloys. Mater. Chem. Phys. 210 (2018), pp. 2–11. doi:10.1016/j.matchemphys.2017.07.037.
  • B. Han, J. Wei, Y. Tong, D. Chen, Y. Zhao, J. Wang, F. He, T. Yang, C. Zhao, Y. Shimizu, K. Inoue, Y. Nagai, A. Hu, C.T. Liu and J.J. Kai, Composition evolution of gamma prime nanoparticles in the Ti-doped CoFeCrNi high entropy alloy. Scr. Mater. 148 (2018), pp. 42–46. doi:10.1016/j.scriptamat.2018.01.025.
  • J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh and Z.P. Lu, Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys. Intermetallics 79 (2016), pp. 41–52. doi:10.1016/j.intermet.2016.09.005.
  • J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An and Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties. Acta. Mater. 102 (2016), pp. 187–196. doi:10.1016/j.actamat.2015.08.076.
  • T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu and C.T. Liu, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science 362 (2018), pp. 933–937. doi:10.1126/science.aas8815.
  • P. Pandey, S. Kashyap, D. Palanisamy, A. Sharma and K. Chattopadhyay, On the high temperature coarsening kinetics of ϒ´ precipitates in a high strength Co37.6Ni35.4Al9.9Mo4.9Cr5.9Ta2.8Ti3.5 fcc-based high entropy alloy. Acta. Mater. 177 (2019), pp. 82–95. doi:10.1016/j.actamat.2019.07.011.
  • Y.L. Zhao, T. Yang, Y.R. Li, L. Fan, B. Han, Z.B. Jiao, D. Chen, C.T. Liu and J.J. Kai, Superior high-temperature properties and deformation-induced planar faults in a novel L12-strengthened high-entropy alloy. Acta Mater. 188 (2020), pp. 517–527. doi:10.1016/j.actamat.2020.02.028.
  • J.-R. Zhao, F.-Y. Hung and T.-S. Lui, Microstructure and tensile fracture behavior of three-stage heat treated inconel 718 alloy produced via laser powder bed fusion process. J. Mater. Res. Tech. 9 (2020), pp. 3357–3367. doi:10.1016/j.jmrt.2020.01.030.
  • I. Kalay, Microstructure and mechanical properties of CoCrFeNi(Ti-Al) high entropy alloys. Hittite J. Sci. Eng. 7 (2020), pp. 157–162. doi:10.17350/HJSE19030000184.
  • X. Yang and Y. Zhang, Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132 (2012), pp. 233–238. doi:10.1016/j.matchemphys.2011.11.021.
  • S. Guo, C. Ng, J. Lu and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109 (2011), pp. 103505. doi:10.1063/1.3587228.
  • S. Guo, Phase selection rules for cast high entropy alloys: an overview. Mater. Sci. Tech. 31 (2015), pp. 1223–1230. doi:10.1179/1743284715Y.0000000018.
  • A. Takeuchi and A. Inoue, Mixing enthalpy of liquid phase calculated by miedema’s scheme and approximated with sub-regular solution model for assessing forming ability of amorphous and glassy alloys. Intermetallics 18 (2010), pp. 1779–1789. doi:10.1016/j.intermet.2010.06.003.
  • X.D. Xu, S. Guo, T.G. Nieh, C.T. Liu, A. Hirata and M.W. Chen, Effects of mixing enthalpy and cooling rate on phase formation of AlxCoCrCuFeNi high-entropy alloys. Materialia 6 (2019), pp. 100292. doi:10.1016/j.mtla.
  • S. Koppoju, S.P. Konduri, P. Chalavadi, S.R. Bonta and R. Mantripragada, Effect of Ni on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy. Trans. Indian Ins. Met. 73 (2020), pp. 853–862. doi:10.1007/s12666-019-01838-2.
  • S.G. Ma and Y. Zhang, Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater. Sci. Eng. A 532 (2012), pp. 480–486. doi:10.1016/j.msea.2011.10.110.
  • H.M. Daoud, A.M. Mazoni, N. Wanderka and U. Glatzel, High-temperature tensile strength of Al10Co25Cr8Fe15Ni36Ti6 compositionally complex alloy (high-entropy alloy). JOM 67 (2015), pp. 2271–2277. doi:10.1007/S11837-015-1484-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.