158
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A new numerical model for simulating transient liquid phase (TLP) bonding of dissimilar materials involving 1D, 2D and 3D solid–liquid interface migration

&
Pages 2185-2206 | Received 08 Jan 2022, Accepted 08 Jul 2022, Published online: 25 Jul 2022

References

  • M.S. Park, S.L. Gibbons and R. Arróyave, Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions. Acta Mater. 60 (2012), pp. 6278–6287.
  • N.S. Bosco and F.W. Zok, Critical interlayer thickness for transient liquid phase bonding in the Cu–Sn system. Acta Mater. 52 (2004), pp. 2965–2972.
  • S.R. Cain, J.R. Wilcox and R. Venkatraman, A diffusional model for transient liquid phase bonding. Acta Mater. 45(2) (1997), pp. 701–707.
  • J.F. Li, P.A. Agyakwa and C.M. Johnson, Kinetics of Ag3Sn growth in Ag–Sn–Ag system during transient liquid phase soldering process. Acta Mater. 58 (2010), pp. 3429–3443.
  • P. Davies, A. Johal, H. Davies and S. Marchisio, Powder interlayer bonding of titanium alloys: Ti–6Al–2Sn–4Zr–6Mo and Ti–6Al–4V. Int. J. Adv. Manuf. Technol. 103 (2019), pp. 441–452.
  • A. Malekan, M. Farvizi, S.E. Mirsalehi, N. Saito and K. Nakashima, Influence of bonding time and transient liquid phase bonding behavior of Hastelloy X using Ni–Cr–B–Si–Fe filler alloy. Mater. Sci. Eng. 755 (2019), pp. 37–49.
  • V. Attari, S. Ghosh, T. Duong and R. Arroyave, On the interfacial phase growth and vacancy evolution during accelerated electromigration in Cu/Sn/Cu microjoint. Acta Mater. 160 (2018), pp. 185–198.
  • S.S.S. Afghahi, A. Ekrami, S. Farahany and A. Jahangiri, Effect of bonding parameters on microstructure development during TGTLP bonding of Al7075 alloy. Philos. Mag. 94(11) (2014), pp. 1166–1176.
  • T. Lin, H. Li, P. He, H. Wei, L. Li and J. Feng, Microstructure evolution and mechanical properties of transient liquid phase (TLP) bonded joints of TiAl intermetallics. Intermetallics 37 (2013), pp. 59–64.
  • I. Sah, J. Hwang and E. Kim, Creep behavior of diffusion-welded alloy 617. Metals. (Basel) 11 (2021), p. 830.
  • G. Phanikumar, K. Chattopadhyay and P. Dutta, Joining of dissimilar metals: issues and modelling techniques. Sci. Technol. Weld. Join. 16 (2011), pp. 313–317.
  • B. Binesh, Diffusion brazing of IN718/AISI 316L dissimilar joint: microstructure evolution and mechanical properties. J. Manuf. Process. 57 (2020), pp. 196–208.
  • K. Martinsen, S.J. Hu and B.E. Carlson, Joining of dissimilar materials. CIRP Ann-Manuf. Technol. 64 (2015), pp. 679–699.
  • A. Jalali, M. Atapour, M. Shamanian and M. Vahman, Transient liquid phase (TLP) bonding of Ti-6Al-4V/UNS 32750 super duplex stainless steel. J. Manuf. Process. 33 (2018), pp. 194–202.
  • A.Y. Shamsabadi, R. Bakhtiari and B.G. Eisaabadi, TLP bonding of IN738/MBF20/IN718 system. J. Alloys Compd. 685 (2016), pp. 896–904.
  • R. Zhongci, W. Shuncai and Z. Yunrong, Microstructure and bonding behavior of a new Hf-bearing interlayer alloy for single crystal nickel-base superalloy. Scripta Mater. 34(1) (1996), pp. 163–168.
  • D.M. Turriff, S.F. Corbin and M. Kozdras, Diffusional solidification phenomena in clad aluminum automotive braze sheet. Acta Mater. 58 (2010), pp. 1332–1341.
  • F.C. Campbell, Joining: Understanding the Basics, ASM International, Ohio, 2011.
  • A. Farzadi, H. Esmaeili and S.E. Mirsalehi, Transient liquid phase bonding of Inconel 617 superalloy: effect of filler metal type and bonding time. Weld. World 63 (2019), pp. 191–200.
  • S. Shakerin, V. Maleki, S. Alireza Ziaei, H. Omidvar, M.R. Rahimipour and S.E. Mirsalehi, Microstructural and mechanical assessment of transient liquid phase bonded commercially pure titanium. Can. Metall. Q. 56 (2017), pp. 360–367.
  • W. Cai, G. Daehn, A. Vivek, J. Li, H. Khan, R.S. Mishra and M. Komarasamy, A state-of-the-art review on solid-state metal joining. J. Manuf. Sci. Eng. 141 (2018), pp. 1–35.
  • L. Yuan, J. Xiong, Y. Du, J. Ren, J. Shi and J. Li, Microstructure and mechanical properties in the TLP joint of FeCoNiTiAl and Inconel 718 alloys using BNi2 filler. J. Mater. Sci. Technol. 61 (2021), pp. 176–185.
  • E. Baharzadeh, M. Shamanian, M. Rafiei, H. Mostaan and J.A. Szpunar, EBSD study of dissimilar transient liquid phase joining of duplex stainless steel SAF 2205 to nickel-based superalloy IN X-750. Weld. World 65 (2021), pp. 721–730.
  • K.O. Cooke and A.M. Atieh, Current trends in dissimilar diffusion bonding of titanium alloys to stainless steels, aluminium and magnesium. J. Manuf. Mater. Process. 4 (2020), p. 39.
  • M.A. Mofid and A.M. Nejad, Flame spray assisted TLP bonding of Ti alloy to Al alloy. Mater. Chem. Phys. 263 (2021), pp. 124404.
  • O.A. Ojo, O.A. Olatunji and M.C. Chaturvedi, Influence of liquid state diffusion on joint microstructure developed during transient liquid phase bonding of dissimilar superalloys. Philos. Mag. Lett. 97(11) (2017), pp. 419–428.
  • O.A. Ojo and O. Aina, On the effect of liquid-state diffusion on isothermal solidification completion time during transient liquid-phase bonding of dissimilar materials. Metall. Mater. Trans. A 49 (2018), pp. 1481–1485.
  • E. Baharzadeh, M. Shamanian, M. Rafiei and H. Mostaan, Properties of IN X-750/BNi-2/SAF 2205 joints formed by transient liquid phase bonding. J. Mater. Process. Technol. 274 (2019), p. 116297.
  • D.S. Duvall, W.A. Owczarski and D.F. Paulonis, TLP bonding: a new method for joining heat resistant alloys. Weld. J. 53 (1974), pp. 203–214.
  • X. Wu, R.S. Chandel and H. Li, Evaluation of transient liquid phase bonding between nickel-based superalloys. J. Mater. Sci. 36 (2001), pp. 1539–1546.
  • O.C. Afolabi and O.A. Ojo, Development of a numerical model for simulating transient liquid phase (TLP) bonding involving two solid-liquid interfaces that concurrently undergo 2D or 3D migration. Metall. Mater. Trans. A 52 (2021), pp. 2287–2297.
  • A. Ghoneim and O.A. Ojo, Numerical modeling and simulation of a diffusion-controlled liquid–solid phase change in polycrystalline solids. Comput. Mater. Sci. 50(3) (2011), pp. 1102–1113.
  • M.L. Kuntz, B. Panton, S. Wasiur-Rahman, Y. Zhou and S.F. Corbin, An experimental study of transient liquid phase bonding of the ternary Ag-Au-Cu system using differential scanning calorimetry. Metall. Mater. Trans. A 44 (2013), pp. 3708–3720.
  • J. Crank, The Mathematics of Diffusion, Oxford University Press, London, 1975.
  • T.C. Illingworth and I.O. Golosnoy, Numerical solutions of diffusion-controlled moving boundary problems which conserve solute. J. Comput. Phys. 209(1) (2005), pp. 207–225.
  • W.D. Murray and F. Landis, Numerical and machine solutions of transient heat-conduction problems involving melting or freezing: part I—method of analysis and sample solutions. J. Heat. Transfer 81(2) (1959), pp. 106–112.
  • M. Rappaz, M. Bellet and M. Deville, Numerical Modeling in Materials Science and Engineering, Springer Series in Computational Mathematics, Springer, Berlin, 2003.
  • A. Ghanbar, D.E. Michael and O.A. Ojo, Influence of variable diffusion coefficient on solid-liquid interface migration kinetics during transient liquid phase bonding. Philos. Mag. 99(17) (2019), pp. 2169–2184.
  • O.E. Bamidele and O.A. Ojo, Numerical simulation study of temperature gradient transient liquid phase bonding with concentration-dependent diffusivity. Metall. Mater. Trans. A 52 (2021), pp. 2261–2273.
  • T.L. Yang, T. Aoki, K. Matsumoto, K. Toriyama, A. Horibe, H. Mori, Y. Orii, J.Y. Wu and C.R. Kao, Full intermetallic joints for chip stacking by using thermal gradient bonding. Acta Mater. 113 (2016), pp. 90–97.
  • J. Borowiecka-Jamrozek and J. Lachowski, Diffusion of boron in cobalt sinters. Arch. Metall. Mater. 58 (2013), pp. 1131–1136.
  • H. Assadi, A.A. Shirzadi and E.R. Wallach, Transient liquid phase diffusion bonding under a temperature gradient: modelling of the interface morphology. Acta Mater. 49 (2001), pp. 31–39.
  • A.A. Shirzadi and E.R. Wallach, Analytical modelling of transient liquid phase (TLP) diffusion bonding when a temperature gradient is imposed. Acta Mater. 47(13) (1999), pp. 3551–3560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.