162
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Thermokinetic stabilisation of nanocrystalline Cu by ternary approach

, ORCID Icon, &
Pages 27-42 | Received 21 Jun 2022, Accepted 02 Sep 2022, Published online: 16 Sep 2022

References

  • H. Gleiter, Nanocrystalline materials. Prog. Mater. Sci. 33 (1989), pp. 223–315.
  • K.S. Kumar, H.V. Swygenhoven and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys. Acta. Mater 51 (2003), pp. 5743–5774.
  • M.A. Meyers, A. Mishra and D.J. Benson, Mechanical properties of nanocrystalline materials. Prog. Mater. Sci 51 (2006), pp. 427–556.
  • M. Dao, L. Lu, R.J. Asaro, J.T.M.D. Hosson and E. Ma, Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta. Mater. 55 (2007), pp. 4041–4065.
  • E.N. Hahn and M.A. Meyers, Grain-size dependent mechanical behavior of nanocrystalline metals. Mater. Sci. Eng. A 646 (2015), pp. 101–134.
  • C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46 (2001), pp. 1–184.
  • M.H. Enayati and F.A. Mohamed, Application of mechanical alloying/milling for synthesis of nanocrystalline and amorphous materials. Int. Mater. Rev 59 (2014), pp. 394–416.
  • D.B. Witkin and E.J. Lavernia, Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci 51 (2006), pp. 1–60.
  • N.K. Katiyar, K. Biswas and C.S. Tiwary, Cryomilling as environmentally friendly synthesis route to prepare nanomaterials. Int. Mater. Rev 66 (2021), pp. 493–532. doi:10.1080/09506608.2020.1825175.
  • C.A. Schuh and K. Lu, Stability of nanocrystalline metals: The role of grain-boundary chemistry and structure. MRS Bull. 46 (2021), pp. 225–235.
  • G.E. Korth and R.L. Williamson, Dynamic consolidation of metastable nanocrystalline powders. Met. Trans. A 26 (1995), pp. 2571–2578.
  • E.Y. Gutmanas, L.I. Trusov and I. Gotman, Consolidation, microstructure and mechanical properties of nanocrystalline metal powders. Nanost. Mater 4 (1994), pp. 893–901.
  • K. Sikdar, S. Chakravarty, D. Roy, R.O. Scattergood and C.C. Koch, Synthesis and characterization of an in situ consolidated nanocrystalline Cu88Al11.5Y0.5 alloy. J. Alloys Compd 717 (2017), pp. 219–225.
  • C.C. Koch, R.O. Scattergood, K.A. Darling and J.E. Semones, Stabilization of nanocrystalline grain sizes by solute additions. J. Mater. Sci 43 (2008), pp. 7264–7272.
  • D. Amram and C.A. Schuh, Interplay between thermodynamic and kinetic stabilization mechanisms in nanocrystalline Fe-Mg alloys. Acta. Mater. 144 (2018), pp. 447–458.
  • J. Weissmüller, Alloy effects in nanostructures. Nanost. Mater 3 (1993), pp. 261–272.
  • T. Chookajorn, H.A. Murdoch and C.A. Schuh, Design of stable nanocrystalline alloys. Science 337 (2012), pp. 951–954.
  • H.A. Murdoch and C.A. Schuh, Stability of binary nanocrystalline alloys against grain growth and phase separation. Acta. Mater 61 (2013), pp. 2121–2132.
  • J.R. Trelewicz and C.A. Schuh, Grain boundary segregation and thermodynamically stable binary nanocrystalline alloys. Phys. Rev. B 79 (2009), pp. 094112.
  • K.A. Darling, M.A. Tschopp, B.K.V. Leeuwen, M.A. Atwater and Z.K. Liu, Mitigating grain growth in binary nanocrystalline alloys through solute selection based on thermodynamic stability maps, Comp. Mater. Sci 84 (2014), pp. 255–266.
  • P. Wynblatt and D. Chatain, Anisotropy of segregation at grain boundaries and surfaces. Met. Trans. A 37 (2006), pp. 2595–2620.
  • Y.Z. Chen, K. Wang, G.B. Shen, A.V. Ceguerra, L.K. Huang, H. Dong, L.F. Cao, S.P. Ringer and F. Liu, Grain size stabilization of mechanically alloyed nanocrystalline Fe-Zr alloys by forming highly dispersed coherent Fe-Zr-O nanoclusters. Acta. Mater. 158 (2018), pp. 340–353.
  • K. Sikdar, A. Mahata, B. Roy and D. Roy, Hybrid thermal stabilization of Zr doped nanocrystalline Cu. Mater. Des 164 (2019), pp. 107564.
  • H. Kotan, K.A. Darling, M. Saber, R.O. Scattergood and C.C. Koch, Thermal stability and mechanical properties of nanocrystalline Fe–Ni–Zr alloys prepared by mechanical alloying. J. Mater. Sci 48 (2013), pp. 8402–8411.
  • W. Xing, S.A. Kube, A.R. Kalidindi, D. Amram, J. Schroers and C.A. Schuh, Stability of ternary nanocrystalline alloys in the Pt–Pd–Au system. Materialia 8 (2019), pp. 100449.
  • K. Sikdar, A. Mahata, S. Chakravarty, M.A. Atwater, D. Roy and C.C. Koch, Effect of B on the thermal stabilization of cryomilled nanocrystalline Cu–Al alloy. Materilia 5 (2019), pp. 100253.
  • M.A. Atwater, D. Roy, K.A. Darling, B.G. Butler, R.O. Scattergood and C.C. Koch, The thermal stability of nanocrystalline copper cryogenically milled with tungsten. Mater. Sci. Eng. A 558 (2012), pp. 226–233.
  • K.M. Youssef, R.O. Scattergood, K.L. Murty and C.C. Koch, Nanocrystalline Al–Mg alloy with ultrahigh strength and good ductility. Scripta. Mater 54 (2006), pp. 251–256.
  • X.W. Zhou, R.A. Johnson and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Phys. Rev. B. 69(14) (2004), pp. 144113.
  • C. Liu, J. Cohen, J. Adams and A. Voter, EAM study of surface self-diffusion of single adatoms of fcc metals Ni, Cu, Al, Ag, Au, Pd, and Pt. Surf. Sci. 253(1-3) (1991), pp. 334–344.
  • M.S. Daw, S.M. Foiles and M.I. Baskes, The embedded-atom method: a review of theory and applications. Mater. Sci. Rep. 9(7-8) (1993), pp. 251–310.
  • S. Foiles, M. Baskes and M.S. Daw, Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B 33(12) (1986), pp. 7983–7991.
  • O. Watanabe, H.M. Zbib and E. Takenouchi, Crystal plasticity: micro-shear banding in polycrystals using Voronoi tessellation. Int. J. Plast. 14(8) (1998), pp. 771–788.
  • M. Brandbyge, J.L. Mozos, P. Ordejón, J. Taylor and K. Stokbro, Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(16) (2002), pp. 165401.
  • M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics method. J. Appl. Phys. 52(12) (1981), pp. 7182–7190.
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1) (2009), pp. 015012.
  • D. Faken and H. Jónsson, Systematic analysis of local atomic structure combined with 3D computer graphics, Comp. Mater. Sci 2(2) (1994), pp. 279–286.
  • B. Gillot, H. Souha and M. Radid, Kinetics of solid state reaction between zirconium and copper(I) chloride. Int. J. Inorg. Mater. 3 (2001), pp. 1083–1089.
  • P. Bate, The effect of deformation on grain growth in Zener pinned systems. Acta Mater. 49 (2001), pp. 1453–1461.
  • R.D. Doherty, Grain coarsening – insights from curvature modeling Cyril Stanley Smith lecture. Mater. Sci. Forum (2012), pp. 715–716.
  • M.A. Atwater, R.O. Scattergood and C.C. Koch, The stabilization of nanocrystalline copper by zirconium. Mater. Sci. Eng. A 559 (2013), pp. 250–256.
  • Y. Du, L. Li, J.M. Pureza, Y.W. Chung, K.G. Pradeep, S. Sen and J. Schneider, Thermal stability of nanocrystalline grains in Cu-W films. Surf. Coat. Technol. 357 (2019), pp. 662–668.
  • K.A. Darling, B.K.V. Leeuwen, C.C. Koch and R.O. Scattergood, Thermal stability of nanocrystalline Fe–Zr alloys. Mater. Sci. Eng. A 527 (2010), pp. 3572–3580.
  • G.E. Dieter, Mechanical Metallurgy, SI Metric Edition (3rd), McGraw-Hill Book Company, 1928.
  • K. Sikdar, B. Roy, A. Mahata and D. Roy, Enhanced thermal stability of nanocrystalline Cu-Al alloy by nanotwin and nanoprecipitate. J. Alloys Compd. 922 (2022), pp. 166–273.
  • N.K. Kumar, B. Roy and J. Das, Effect of twin spacing, dislocation density and crystallite size on the strength of nanostructured α-brass. J. Alloys Compd. 618 (2015), pp. 139–145.
  • B. Roy, T. Maity and J. Das, Tuning of nanostructure by the control of twin density, dislocation density, crystallite size, and stacking fault energy in Cu100− x Znx (0 ≤ x≤ 30 wt%). Mater. Sci. Eng. A. 672 (2016), pp. 203–215.
  • B. Roy and J. Das, Strengthening face centered cubic crystals by annealing induced nano-twins. Sci. Rep. 7 (2017), pp. 1–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.