150
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

An extended theory of vacancy formation and its application to ionic conduction in the intrinsic and extrinsic regions

&
Pages 101-118 | Received 07 Jun 2022, Accepted 20 Sep 2022, Published online: 08 Oct 2022

References

  • V. Kraftmakher, Equilibrium vacancies and thermophysical properties of metals. Phys. Rep. 299 (1998), pp. 79–188.
  • P. Rudolph, Fundamentals and engineering of defects. Prog. Cryst. Growth Charact. Mater. 62 (2016), pp. 89–110.
  • T. Ohashi, Generation and accumulation of atomic vacancies due to dislocation movement and pair annihilation. Philos. Mag. 98 (2018), pp. 2275–2295.
  • Y.Y. Yao, C.H. Song, P. Bao, D. Su, X.M. Lu, J.S. Zhu and Y.N. Wang, Doping effect on the dielectric property in bismuth titanate. J. Appl. Phys. 95 (2004), pp. 3126–3130.
  • Z. Lijuan, W. Lihai, L. Jiandang, C. Bin, Z. Minglei and Y. Bangjiao, Dielectric properties and structural defects in BaTi1−xSnx O3 ceramics. J. Phys. Conf. Ser. 443 (2013), 012014 (4 pages).
  • R. Kathiria, D.E. Wolf, R. Raj and M. Jongmanns, Frenkel pairs cause elastic softening in zirconia: Theory and experiments. New J. Phys. 23 (2021), 053013 (11 pages).
  • L.N. Patro and K. Hariharan, Fast fluoride ion conducting materials in solid state ionics: An overview. Solid State Ionics 239 (2013), pp. 41–49.
  • K. Funke, Solid state ionics: From Michael Faraday to green energy—the European dimension. Sci. Technol. Adv. Mater. 14 (2013), 043502 (50 pages).
  • H.S. Bhatti, S. Jabeen, A. Mumtaz, G. Ali, S. Qaisar and S. Hussain, Effects of cobalt doping on structural, optical, electrical and electrochemical properties of Li4Ti5O12 anode. J. Alloys Compd. 890 (2021), 161691 (12 pages).
  • B.B. Karki and G. Khanduja, A computational study of ionic vacancies and diffusion in MgSiO3 perovskite and post-perovskite. Earth Planet. Sci. Lett. 260 (2007), pp. 201–211.
  • E. Kartini and C.T. Genardy, The future of all solid state battery. IOP Conf. Ser. Mater. Sci. Eng. 924 (2020), 012038 (5 pages).
  • M.V. Reddy, C.M. Julien, A. Mauger and K. Zaghib, Sulfide and oxide inorganic solid electrolytes for all-solid-state Li batteries: A review. Nanomaterials 10 (2020), 1606 (80 pages).
  • Y.-K. Sun, Promising all-solid-state batteries for future electric vehicles. ACS Energy Lett. 5 (2020), pp. 3221–3223.
  • M.L.F. Nascimento, Determination of mobility and charge carriers concentration from ionic conductivity in sodium germanate glasses above and below Tg, ISRN Electrochemistry. (2013), 240571 (10 pages).
  • A.C.M. Rodrigues, M.L.F. Nascimento, C.B. Bragatto and J.-L. Souquet, Charge carrier mobility and concentration as a function of composition in AgPO3-AgI glasses. J. Chem. Phys. 135 (2011), 234504 (7 pages).
  • J.-L. Souquet, M.L.F. Nascimento and A.C.M. Rodrigues, Charge carrier concentration and mobility in alkali silicates. J. Chem. Phys. 132 (2010), 034704 (7 pages).
  • C. Catlow, J. Corish, K. Diller, P. Jacobs and M. Norgett, A theoretical study of intrinsic and extrinsic defect properties of alkali halides. J. Phys. Colloq. 37(C7) (1976), pp. C7-253–C7-259.
  • J.K. Aboagye and R.J. Friauf, Anomalous high-temperature ionic conductivity in the siliver halides. Phys. Rev. B 11 (1975), pp. 1654–1664.
  • D.S. Mebane and J. Maier, DC conductivity and dielectric properties in silver chloride, revisited. Phys. Chem. Chem. Phys. 12 (2010), pp. 2478–2487.
  • J. Corish and P.W.M. Jacobs, Ionic conductivity of silver chloride single crystals. J. Phys. Chem. Solids 33 (1972), pp. 1799–1818.
  • I.E. Hooton and P.W.M. Jacobs, Ionic conductivity of pure and doped sodium chloride crystals. Can. J. Chem. 66 (1988), pp. 830–835.
  • A.P. Batra and L.M. Slifkin, Temperature dependence of Frenkel-defect formation energy deduced from diffusion of sodium in silver chloride. Phys. Rev. B 12 (1975), pp. 3473–3475.
  • R.J. Lieb and L.M. Slifkin, Effect of ionic polarizability on impurity–vacancy association in siliver halides. J. Phys. Chem. Solids 57 (1996), pp. 101–107.
  • A.P. Batra, E.F. Ekpo, M. Dominique and N.U. Okorie, Diffusion of divalent calcium in silver bromide. Phys. Rev. B 42 (1990), pp. 1404–1409.
  • Y. Mateyshina and N. Uvarov, The effect of oxide additives on the transport properties of cesium nitrite. Solid State Ionics 324 (2018), pp. 1–6.
  • Y. Zheng, M. Kusakabe and H. Okazaki, Ionic conduction in dilute pseudo-binary systems CuBr–Cu2Se. Solid State Ionics 110 (1998), pp. 263–267.
  • N. Hainovsky and J. Maier, Simple phenomenological approach to premelting and sublattice melting in Frenkel disordered ionic crystals. Phys. Rev. B 51 (1995), pp. 15789–15797.
  • T. Kurosawa, On the melting of ionic crystals. J. Phys. Soc. Jpn. 12 (1957), pp. 338–346.
  • J. Kincs and S.W. Martin, Non-Arrhenius conductivity in glass: Mobility and conductivity saturation effects. Phys. Rev. Lett. 76 (1996), pp. 70–73.
  • M. Aniya and M. Ikeda, A model for non-Arrhenius ionic conductivity. Nanomaterials 9 (2019), 911 (10 pages).
  • Y. Okada, M. Ikeda and M. Aniya, Non-Arrhenius ionic conductivity in solid electrolytes: A theoretical model and its relation with the bonding nature. Solid State Ionics 281 (2015), pp. 43–48.
  • J. Wang, J. Ding, O. Delaire and G. Arya, Atomistic mechanisms underlying non-Arrhenius ion transport in superionic conductor AgCrSe2. ACS Appl. Energy Mater. 4 (2021), pp. 7157–7167.
  • M. Aniya, H. Sadakuni and E. Hirano, Ionic conductors: Effect of temperature on conductivity and mechanical properties and their interrelations. Crystals 11 (2021), 1008 (15 pages).
  • R.W. Bonne and J. Schoonman, The ionic conductivity of beta lead fluoride. J. Electrochem. Soc. 124 (1977), pp. 28–35.
  • V. Trnovcová, P.P. Fedorov, I.I. Buchinskaya, V. Šmatko and F. Hanic, Fast ionic conductivity of PbF2:MF2 (M = Mg, Ba, Cd) and PbF2:ScF3 single crystals and composites. Solid State Ionics 119 (1999), pp. 181–189.
  • N.W. Aschroft and N.D. Mermin, Solid State Physics, Thomson Learning Inc, 1976.
  • A. Manzoor, Y. Zhang and D.S. Aidhy, Factors affecting the vacancy formation energy in Fe70Ni10Cr20 random concentrated alloy. Comput. Mater. Sci. 198 (2021), 110669 (11 pages).
  • Y. Mishin, M.R. Sørensen and A.F. Voter, Calculation of point-defect entropy in metals. Philos. Mag. A 81 (2001), pp. 2591–2612.
  • P. Lang, A. Falahati, M.R. Ahmadi, P. Warczok, E. Povoden-Karadeniz, E. Kozeschnik and R. Radis, Modeling the influence of cooling rate on the precipitate evolution in Al-Mg-Si (Cu) alloys. Mater. Sci. Tech. (MS&T) (2011), pp. 284–291.
  • A. Falahati, P. Lang and E. Kozeschnik, Precipitation in Al-alloy 6016 – the role of excess vacancies. Mater. Sci. Forum 706-709 (2021), pp. 317–322.
  • N.F. Uvarov and E.F. Hairetdinov, Unusual transport and structural properties of mechanically treated polycrystalline silver iodide. Solid State Ionics 96 (1997), pp. 219–225.
  • R. Falster and V.V. Voronkov, Intrinsic point defects and their control in silicon crystal growth and water processing. MRS Bull. 25 (2000), pp. 28–32.
  • L.M. Martinez and C.A. Angell, A thermodynamics connection to the fragility of glass-forming liquids. Nature 410 (2001), pp. 663–667.
  • B. Bhandrai and Y.H. Roos, Non-equilibrium States and Glass Transitions in Food, Woodhead Publishing, 2017.
  • R. Kovacs, A.M. Scarfone and S. Abe, Entropy and non-equilibrium statistical mechanics. Entropy 22 (2020), 507 (2 pages).
  • A. Düvel, M. Wilkening, R. Uecker, S. Wegner, V. Šepelák and P. Heitjans, Mechanosynthesized nanocrystalline BaLiF3: The impact of grain boundaries and structural disorder on ionic transport. Phys. Chem. Chem. Phys. 12 (2010), pp. 11251–11262.
  • C. Tsallis, Introduction to Nonextensive Statistical Mechanics, Springer, 2009.
  • A.L. Samgin, A nonextensive approach to ionic transoprt. Solid State Ionics 175 (2004), pp. 857–860.
  • M. Nishiyama, S. Kleijn, V. Aquilanti and T. Kasai, Temperature dependence of respiration rates of leaves, 18O-experiments and super-Arrhenius kinetics. Chem. Phys. Lett. 482 (2009), pp. 325–329.
  • V.H.C. Silva, V. Aquilanti, H.C.B. de Oliveira and K.C. Mundim, Uniform description of non-Arrhenius temperature dependence of reaction rates, and a heuristic criterion for quantum tunneling vs classical non-extensive distribution. Chem. Phys. Lett. 590 (2013), pp. 201–207.
  • M. Aniya and S. Ichihara, Defect interactions and the superionic transition temperature: A comparative study. J. Phys. Chem. Solids 66 (2005), pp. 288–291.
  • J.C. Burbano, R.A. Vargas, D.P. Lara, C.A. Lozano Z. and H. Correa, Defect interaction and solid electrolyte transition in AgI-based materials. Solid State Ionics 180 (2009), pp. 1553–1557.
  • S. Strässler and C. Kittel, Degeneracy and the order of the phase transformation in the molecular-field approximation. Phys. Rev. 139 (1965), pp. A758–A760.
  • M.J. Rice, S. Stässler and G.A. Toombs, Superionic conductors: Theory of the phase transition to the cation disordered state. Phys. Rev. Lett. 32 (1974), pp. 596–599.
  • F. Zimmer, P. Ballone, M. Parrinelo and J. Maier, The conductivity anomaly in PbF2: A numerical investigation by classical MD and MC simulations. Solid State Ionics 127 (2000), pp. 277–284.
  • N. Vaidehi, R. Akila, A.K. Shukla and K.T. Jacob, Enhanced ionic conduction in dispersed solid electrolyte systems CaF2–Al2O3 and CaF2–CeO2. Mater. Res. Bull. 21 (1986), pp. 909–916.
  • M. Aniya, A chemical approach for the microscopic mechanism of fast ion transport in solids. Solid State Ionics 50 (1992), pp. 125–129.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.