867
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On mechanical twinning in tetragonal lattice

ORCID Icon, ORCID Icon, , , &
Pages 119-136 | Received 29 Jul 2022, Accepted 20 Sep 2022, Published online: 27 Oct 2022

References

  • P.M. Anderson, J.P. Hirth and J. Lothe, Theory of Dislocations, 3rd ed, Cambridge University Press, Cambridge, England, 2017.
  • J.W. Christian and S. Mahajan, Deformation twinning. Prog. Mater. Sci. 39 (1995), pp. 1–157. doi:10.1016/0079-6425(94)00007-7.
  • J. Wang, J.P. Hirth and C.N. Tomé, (1¯012) Twinning nucleation mechanisms in hexagonal-close-packed crystals. Acta Mater. 57 (2009), pp. 5521–5530. doi:10.1016/j.actamat.2009.07.047.
  • H. Wang, P.D. Wu, J. Wang and C.N. Tomé, A crystal plasticity model for hexagonal close packed (HCP) crystals including twinning and de-twinning mechanisms. Int. J. Plast 49 (2013), pp. 36–52. doi:10.1016/j.ijplas.2013.02.016.
  • B. Anthony, B. Leu, I.J. Beyerlein and V.M. Miller, Deformation twin interactions with grain boundary particles in multi-phase magnesium alloys. Acta Mater. 219 (2021), pp. 117225. doi:10.1016/j.actamat.2021.117225.
  • J. Li, M. Sui and B. Li, A half-shear-half-shuffle mechanism and the single-layer twinning dislocation for {112¯2}〈112¯3¯〉 mode in hexagonal close-packed titanium. Acta Mater. 216 (2021), pp. 117150. doi:10.1016/j.actamat.2021.117150.
  • S. Wang, K. Dang, R.J. McCabe, L. Capolungo and C.N. Tomé, Three-dimensional atomic scale characterization of {112¯2} twin boundaries in titanium. Acta Mater. 208 (2021), pp. 116707. doi:10.1016/j.actamat.2021.116707.
  • P. Zhang, X.H. An, Z.J. Zhang, S.D. Wu, S.X. Li, Z.F. Zhang, R.B. Figueiredo, N. Gao and T.G. Langdon, Optimizing strength and ductility of Cu–Zn alloys through severe plastic deformation. Scr. Mater 67 (2012), pp. 871–874. doi:10.1016/j.scriptamat.2012.07.040.
  • T. Cai, Z.J. Zhang, P. Zhang, J.B. Yang and Z.F. Zhang, Competition between slip and twinning in face-centered cubic metals. J. Appl. Phys 116 (2014), pp. 163512. doi:10.1063/1.4898319.
  • M. Jo, Y.M. Koo, B.-J. Lee, B. Johansson, L. Vitos and S.K. Kwon, Theory for plasticity of face-centered cubic metals. Proc. Natl. Acad. Sci. U.S.A. 111 (2014), pp. 6560–6565. doi:10.1073/pnas.1400786111.
  • P. Chowdhury, H. Sehitoglu, W. Abuzaid and H.J. Maier, Mechanical response of low stacking fault energy Co–Ni alloys – continuum, mesoscopic and atomic level treatments. Int. J. Plast 71 (2015), pp. 32–61. doi:10.1016/j.ijplas.2015.04.003.
  • X. An, S. Ni, M. Song and X. Liao, Deformation twinning and detwinning in face-centered cubic metallic materials. Adv. Eng. Mater 22 (2020), pp. 1900479. doi:10.1002/adem.201900479.
  • B.C. De Cooman, Y. Estrin and S.K. Kim, Twinning-induced plasticity (TWIP) steels. Acta Mater. 142 (2018), pp. 283–362. doi:10.1016/j.actamat.2017.06.046.
  • C. Wang, W. Cai, C. Sun, X. Li, L. Qian and J. Jiang, Strain rate effects on mechanical behavior and microstructure evolution with the sequential strains of TWIP steel. Mater. Sci. Eng. A Struct. Mater 835 (2022), pp. 142673. doi:10.1016/j.msea.2022.142673.
  • Y. Deng, C.C. Tasan, K.G. Pradeep, H. Springer, A. Kostka and D. Raabe, Design of a twinning-induced plasticity high entropy alloy. Acta Mater. 94 (2015), pp. 124–133. doi:10.1016/j.actamat.2015.04.014.
  • Y. Ikeda, B. Grabowski and F. Körmann, Ab initio phase stabilities and mechanical properties of multicomponent alloys: A comprehensive review for high entropy alloys and compositionally complex alloys. Mater. Charact 147 (2019), pp. 464–511. doi:10.1016/j.matchar.2018.06.019.
  • X. Feng, H. Yang, R. Fan, W. Zhang, F. Meng, B. Gan and Y. Lu, Heavily twinned CoCrNi medium-entropy alloy with superior strength and crack resistance. Mater. Sci. Eng. A Struct. Mater 788 (2020), pp. 139591. doi:10.1016/j.msea.2020.139591.
  • S. Picak, H.C. Yilmaz and I. Karaman, Simultaneous deformation twinning and martensitic transformation in CoCrFeMnNi high entropy alloy at high temperatures. Scr. Mater. 202 (2021), pp. 113995. doi:10.1016/j.scriptamat.2021.113995.
  • L.P. Lehman, Y. Xing, T.R. Bieler and E.J. Cotts, Cyclic twin nucleation in tin-based solder alloys. Acta Mater. 58 (2010), pp. 3546–3556. doi:10.1016/j.actamat.2010.01.030.
  • S. Kauffmann-Weiss, A. Kauffmann, R. Niemann, J. Freudenberger, L. Schultz and S. Fähler, Twinning phenomena along and beyond the bain path. Metals. (Basel) 3 (2013), pp. 319–336. doi:10.3390/met3040319.
  • Y. Jia, Y. Wu, S. Zhao, S. Zuo, K.P. Skokov, O. Gutfleisch, C. Jiang and H. Xu, L10 rare-earth-free permanent magnets: The effects of twinning versus dislocations in Mn–Al magnets. Phys. Rev. Mater 4 (2020), pp. 094402. doi:10.1103/physrevmaterials.4.094402.
  • H.T. Pham, T. Duong, K.J. Weber and J. Wong-Leung, Insights into twinning formation in cubic and tetragonal multi-cation mixed-halide perovskite. ACS Materials Lett 2 (2020), pp. 415–424. doi:10.1021/acsmaterialslett.0c00083.
  • C. Boukouvala, E.R. Hopper, D.M. Kelly, P.J. Knight, J.S. Biggins and E. Ringe, Beyond simple crystal systems: Identifying twinning in body-centered tetragonal nanoparticles. Cryst. Growth Des 22 (2022), pp. 653–660. doi:10.1021/acs.cgd.1c01188.
  • B. Skrotzki, Crystallographic aspects of deformation twinning and consequences for plastic deformation processes in γ-TiAl. Acta Mater. 48 (2000), pp. 851–862. doi:10.1016/S1359-6454(99)00385-7.
  • A. Vinogradov, M. Heczko, V. Mazánová, M. Linderov and T. Kruml, Kinetics of cyclically-induced mechanical twinning in γ-TiAl unveiled by a combination of acoustic emission, neutron diffraction and electron microscopy. Acta Mater. 212 (2021), pp. 116921. doi:10.1016/j.actamat.2021.116921.
  • H. Xiang and W. Guo, Synergistic effects of twin boundary and phase boundary for enhancing ultimate strength and ductility of lamellar TiAl single crystals. Int. J. Plast 150 (2022), pp. 103197. doi:10.1016/j.ijplas.2021.103197.
  • F. Appel, J.D. Heaton Paul and M. Oehring, Gamma Titanium Aluminide Alloys: Science and Technology, 1st ed., Wiley-VCH Verlag, Weinheim, Germany, 2011.
  • J.H. Becker, B. Chalmers and E.C. Garrow, Mechanical twinning of indium. Acta Crystallogr. 5 (1952), pp. 853–853. doi:10.1107/S0365110X52002380.
  • H.C.H. Carpenter and S. Tamura, The formation of twinned metallic crystals. Proc. R. Soc. Lond. A Math. Phys. Sci 113 (1926), pp. 161–182. doi:10.1098/rspa.1926.0144.
  • G. Remaut, A. Lagasse and S. Ameltnckx, The electron microscopic observation of mechanical twins in indium. Phys. Status Solidi B Basic Res 6 (1964), pp. 723–731. doi:10.1002/pssb.19640060312.
  • P. Sedlák, H. Seiner, L. Bodnárová, O. Heczko and M. Landa, Elastic constants of non-modulated Ni–Mn–Ga martensite. Scr. Mater 136 (2017), pp. 20–23. doi:10.1016/j.scriptamat.2017.03.041.
  • L. Bodnárová, M. Zelený, P. Sedlák, L. Straka, O. Heczko, A. Sozinov and H. Seiner, Switching the soft shearing mode orientation in Ni–Mn–Ga non-modulated martensite by Co and Cu doping. Smart Mater. Struct 29 (2020), pp. 045022. doi:10.1088/1361-665X/ab7542.
  • Y. Chumlyakov, E. Panchenko, I. Kireeva, I. Karaman, H. Sehitoglu, H.J. Maier, A. Tverdokhlebova and A. Ovsyannikov, Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals. Mater. Sci. Eng. A Struct. Mater 481-482 (2008), pp. 95–100. doi:10.1016/j.msea.2007.02.146.
  • I.V. Kireeva, Y.I. Chumlyakov, Z.V. Pobedennaya, I.V. Kretinina, E. Cesari, S.B. Kustov, C. Picornell, J. Pons and I. Karaman, Orientation dependence of superelasticity in ferromagnetic single crystals Co49Ni21Ga30. Phys. Met. Metallogr 110 (2010), pp. 78–90. doi:10.1134/S0031918X10070100.
  • Y.I. Chumlyakov, I.V. Kireeva, E.Y. Panchenko, E.E. Timofeeva, Z.V. Pobedennaya, S.V. Chusov, I. Karaman, H. Maier, E. Cesari and V.A. Kirillov, High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals. Russ. Phys. J 51 (2008), pp. 1016–1036. doi:10.1007/s11182-009-9143-5.
  • J. Wang and H. Sehitoglu, Twinning stress in shape memory alloys: theory and experiments. Acta Mater. 61 (2013), pp. 6790–6801. doi:10.1016/j.actamat.2013.07.053.
  • P. Müllner, Twinning stress of type I and type II deformation twins. Acta Mater. 176 (2019), pp. 211–219. doi:10.1016/j.actamat.2019.07.004.
  • D. Shilo, E. Faran, B. Karki and P. Müllner, Twin boundary structure and mobility. Acta Mater. 220 (2021), pp. 117316. doi:10.1016/j.actamat.2021.117316.
  • K. Ullakko, J.K. Huang, C. Kantner, R.C. O’Handley and V.V. Kokorin, Large magnetic-field-induced strains in Ni2MnGa single crystals. Appl. Phys. Lett 69 (1996), pp. 1966–1968. doi:10.1063/1.117637.
  • J.C. Suits, Structural instability in new magnetic Heusler compounds. Solid State Commun. 18 (1976), pp. 423–425. doi:10.1016/0038-1098(76)90040-5.
  • A. Ayuela, J. Enkovaara, K. Ullakko and R.M. Nieminen, Structural properties of magnetic Heusler alloys. J. Phys. Condens. Matter 11 (1999), pp. 2017–2026. doi:10.1088/0953-8984/11/8/014.
  • T. Graf, C. Felser and S.S.P. Parkin, Simple rules for the understanding of Heusler compounds. Prog. Solid State Chem 39 (2011), pp. 1–50. doi:10.1016/j.progsolidstchem.2011.02.001.
  • Y. Sutou, N. Kamiya, T. Omori, R. Kainuma, K. Ishida and K. Oikawa, Stress-strain characteristics in Ni–Ga–Fe ferromagnetic shape memory alloys. Appl. Phys. Lett 84 (2004), pp. 1275–1277. doi:10.1063/1.1642277.
  • E.E. Timofeeva, E.Y. Panchenko, Y.I. Chumlyakov and H. Maier, Development of thermoelastic martensitic transformations in ferromagnetic [011]-oriented NiFeGa single crystals in compression. Russ. Phys. J 54 (2012), pp. 1427–1430. doi:10.1007/s11182-012-9766-9.
  • F. Masdeu, J. Pons, C. Seguí, E. Cesari and J. Dutkiewicz, Some features of Ni–Fe–Ga shape memory alloys under compression. J. Magn. Magn. Mater 290-291 (2005), pp. 816–819. doi:10.1016/j.jmmm.2004.11.371.
  • R.F. Hamilton, H. Sehitoglu, C. Efstathiou and H.J. Maier, Inter-martensitic transitions in Ni–Fe–Ga single crystals. Acta Mater. 55 (2007), pp. 4867–4876. doi:10.1016/j.actamat.2007.05.003.
  • J. Wang, H. Sehitoglu and H.J. Maier, Dislocation slip stress prediction in shape memory alloys. Int. J. Plast 54 (2014), pp. 247–266. doi:10.1016/j.ijplas.2013.08.017.
  • H. Morito, A. Fujita, K. Oikawa, K. Fukamichi, R. Kainuma, T. Kanomata and K. Ishida, Magnetic anisotropy in Ni–Fe–Ga–Co ferromagnetic shape memory alloys in the single-variant state. J. Phys. Condens. Matter 21 (2009), pp. 076001. doi:10.1088/0953-8984/21/7/076001.
  • S. Kibey, J.B. Liu, D.D. Johnson and H. Sehitoglu, Predicting twinning stress in FCC metals: linking twin-energy pathways to twin nucleation. Acta Mater. 55 (2007), pp. 6843–6851. doi:10.1016/j.actamat.2007.08.042.
  • H. Huang, X. Li, Z. Dong, W. Li, S. Huang, D. Meng, X. Lai, T. Liu, S. Zhu and L. Vitos, Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys. Acta Mater. 149 (2018), pp. 388–396. doi:10.1016/j.actamat.2018.02.037.
  • O.K. Celebi, A.S.K. Mohammed, J.A. Krogstad and H. Sehitoglu, Evolving dislocation cores at twin boundaries: theory of CRSS elevation. Int. J. Plast 148 (2022), pp. 103141. doi:10.1016/j.ijplas.2021.103141.
  • N. Bernstein and E. Tadmor, Tight-binding calculations of stacking energies and twinnability in FCC metals. Phys. Rev. B 69 (2004), pp. 094116. doi:10.1103/PhysRevB.69.094116.
  • S. Kibey, J.B. Liu, D.D. Johnson and H. Sehitoglu, Generalized planar fault energies and twinning in Cu–Al alloys. Appl. Phys. Lett 89 (2006), pp. 191911. doi:10.1063/1.2387133.
  • M. Daly, A. Kumar, C.V. Singh and G. Hibbard, On the competition between nucleation and thickening in deformation twinning of face-centered cubic metals. Int. J. Plast 130 (2020), pp. 102702. doi:10.1016/j.ijplas.2020.102702.
  • R.W. Cahn, Twinned crystals. Adv. Phys 3 (1954), pp. 363–445. doi:10.1080/00018735400101223.
  • B.A. Bilby and A.G. Crocker, The theory of the crystallography of deformation twinning. Proc. R. Soc. Lond 288 (1965), pp. 240–255. doi:10.1098/rspa.1965.0216.
  • J. Wang, O. Anderoglu, J.P. Hirth, A. Misra and X. Zhang, Dislocation structures of Σ3 {112} twin boundaries in face centered cubic metals. Appl. Phys. Lett 95 (2009), pp. 021908. doi:10.1063/1.3176979.
  • M. Niewczas, Chapter 75 dislocations and twinning in face centred cubic crystals, in Dislocations in Solids, vol. 13, F.R.N. Nabarro, J.P. Hirth, eds., Elsevier, 2007. pp. 263–364.
  • D. Xu, H. Wang, R. Yang and A.K. Sachdev, MD simulation of asymmetric nucleation and motion of [011] superdislocations in TiAl. Chin. Sci. Bull 59 (2014), pp. 1725–1737. doi:10.1007/s11434-014-0321-7.
  • P. Dumitraschkewitz, H. Clemens, S. Mayer and D. Holec, Impact of alloying on stacking fault energies in γ-TiAl. Appl. Sci. (Basel 7 (2017), pp. 1193. doi:10.3390/app7111193.
  • B. Jeong, J. Kim, T. Lee, S.-W. Kim and S. Ryu, Systematic investigation of the deformation mechanisms of a γ-TiAl single crystal. Sci. Rep 8 (2018), pp. 15200. doi:10.1038/s41598-018-33377-z.
  • T. Lee, S.-W. Kim, J.Y. Kim, W.-S. Ko and S. Ryu, First-principles study of the ternary effects on the plasticity of γ-TiAl crystals. Sci. Rep 10 (2020), pp. 21614. doi:10.1038/s41598-020-77891-5.
  • M.H. Yoo, Deformation twinning in superlattice structures. J. Mater. Res 4 (1989), pp. 50–54. doi:10.1557/JMR.1989.0050.
  • M.H. Yoo and B.T.M. Loh, Structural and elastic properties of zonal twin dislocations in anisotropic crystals, in Fundamental Aspects of Dislocation Theory: Conference Proceedings, Nat. Bur. Stand. (US) Special Publication 317, vol. 1, J.A. Simmons, R. de Wit, R. Bullough, Nat. Bur. Stand. (US), Washington, 1970. pp. 479–493.
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54 (1996), pp. 11169–11186. doi:10.1103/PhysRevB.54.11169.
  • G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci 6 (1996), pp. 15–50. doi:10.1016/0927-0256(96)00008-0.
  • P.E. Blöchl, Projector augmented-wave method. Phys. Rev. B 50 (1994), pp. 17953–17979. doi:10.1103/PhysRevB.50.17953.
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter 59 (1999), pp. 1758–1775. doi:10.1103/PhysRevB.59.1758.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), pp. 3865–3868. doi:10.1103/PhysRevLett.77.3865. (Errata: 78, 1396(E), (1997)).
  • M. Methfessel and A.T. Paxton, High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B 40 (1989), pp. 3616–3621. doi:10.1103/PhysRevB.40.3616.
  • W.P. Davey, Precision measurements of the lattice constants of twelve common metals. Phys. Rev 25 (1925), pp. 753–761. doi:10.1103/PhysRev.25.753.
  • M.E. Straumanis, P.B. Rao and W.J. James, Lattice parameters, expansion coefficients, densities of in and in-Cd alloys. Int. J. Mat. Res. (Z. Metallkd.) 62 (1971), pp. 493–498. doi:10.1515/ijmr-1971-620609.
  • E.S.K. Menon, A.G. Fox and R. Mahapatra, Accurate determination of the lattice parameters of  γ-TiAl alloys. J. Mater. Sci. Lett 15 (1996), pp. 1231–1233. doi:10.1007/BF00274384.
  • P. Beran, M. Heczko, T. Kruml, T. Panzner and S. van Petegem, Complex investigation of deformation twinning in γ-TiAl by TEM and neutron diffraction. J. Mech. Phys. Solids 95 (2016), pp. 647–662. doi:10.1016/j.jmps.2016.05.004.
  • M.E. Gruner, R. Niemann, P. Entel, R. Pentcheva, U.K. Rößler, K. Nielsch and S. Fähler, Modulations in martensitic Heusler alloys originate from nanotwin ordering. Sci. Rep 8 (2018), pp. 8489. doi:10.1038/s41598-018-26652-6.
  • M. Zelený, L. Straka, A. Sozinov and O. Heczko, Ab initio prediction of stable nanotwin double layers and 4O structure in Ni2MnGa. Phys. Rev. B 94 (2016), pp. 224108. doi:10.1103/PhysRevB.94.224108.