232
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Investigations of wear properties of immiscible monotectic Al-10Bi alloy

ORCID Icon
Pages 137-152 | Received 07 Sep 2022, Accepted 17 Oct 2022, Published online: 01 Nov 2022

References

  • J. Zhao, H. Li, H. Li, C. Xing, X. Zhang, Q. Wang and J. He, Microstructure formation in centrifugally cast Al–Bi alloys. Comput. Mater. Sci. 49 (2010), pp. 121–125.
  • A.P. Silva, J.E. Spinelli and A. Garcia, Microstructural evolution during upward and downward transient directional solidification of hypomonotectic and monotectic Al–Bi alloys. J. Alloys Compd. 480 (2009), pp. 485–493.
  • A. Mostafa and M. Medraj, Binary phase diagrams and thermodynamic properties of silicon and essential doping elements (Al, as, B, Bi, Ga, in, N, P, Sb and Tl). Mater. 10 (2017), p. 676.
  • Q. Sun, H. Jiang, J. Zhao and J. He, Microstructure evolution during the liquid-liquid phase transformation of Al-Bi alloys under the effect of TiC particles. Acta Mater. 129 (2017), pp. 321–330.
  • W.R. Osório, E.S. Freitas and A. Garcia, EIS and potentiodynamic polarization studies on immiscible monotectic Al–In alloys. Electrochim. Acta 102 (2013), pp. 436–445.
  • C. Li, Y. Yin, G. Cao, M. Xu, R. Li, G. Zhang, Q. Chen and B. Yang, Effect of TiC on microstructure and strength of Al-Bi-Cu alloys. J. Mater. Eng. Perform. 31 (2022), pp. 524–533.
  • M. Zha, Y. Li, R.H. Mathiesen and H.J. Roven, Dispersion of soft Bi particles and grain refinement of matrix in an Al–Bi alloy by equal channel angular pressing. J. Alloys Compd. 605 (2014), pp. 131–136.
  • M. Acila, H. Bensabra and M. Santamaria, Study of the influence of dithizone as an eco-friendly corrosion inhibitor on the corrosion behaviour of Aa7075 aluminium alloy in neutral chloride solution. Metall. Res. Technol. 118 (2021), pp. 203–212.
  • T. Man, L. Zhang, Z. Xiang, W. Wang, M. Huang and E. Wang, Improvement of microstructure and wear property of Al–Bi alloys by Nd addition. JOM 70 (2018), pp. 1344–1348.
  • J. Zhao, H. Li, H. Li, C. Xing, X. Zhang, Q. Wang and J. He, Microstructure formation in centrifugally cast Al–Bi alloys. Comput. Mater. Sci. 49 (2010), pp. 121–125.
  • Z.T. Özen, A.K. Kınacı, O.H. Çelik, İ.A. Sarı, M.B. Güner and G. Özçelik, Effect of Bi alloying element addition on microstructural change in Al–Mg–Si alloys, in Light Metals 2022, Dmitry Eskin, eds., Springer, 2022, pp. 119–126.
  • J.-Z. Zhao, T. Ahmed, H.-X. Jiang, J. He and Q. Sun, Solidification of immiscible alloys: A review. Acta Metall. Sin. 30 (2017), pp. 1–28.
  • D. Manasijević, D. Minić, L. Balanović, M. Premović, M. Gorgievski, D. Živković and D. Milisavljević, Experimental investigation and thermodynamic prediction of the Al–Bi–in phase diagram. J. Alloys Compd. 687 (2016), pp. 969–975.
  • R.V. Reyes, V.E. Pinotti, C.R. Afonso, L.C. Casteletti, A. Garcia and J.E. Spinelli, Processing, as-cast microstructure and wear characteristics of a monotectic Al-Bi-Cu alloy. J. Mater. Eng. Perform. 28 (2019), pp. 1201–1212.
  • I. Kaban, S. Curiotto, D. Chatain and W. Hoyer, Surfaces, interfaces and phase transitions in Al–In monotectic alloys. Acta Mater. 58 (2010), pp. 3406–3414.
  • M.M. Barzani, S. Farahany, N.M. Yusof and A. Ourdjini, The influence of bismuth, antimony, and strontium on microstructure, thermal, and machinability of aluminum-silicon alloy. Mater. Manuf. Process. 28 (2013), pp. 1184–1190.
  • C. Cao, W. Liu, Z. Liu, J. Xu, I. Hwang, I. De Rosa and X. Li, Scalable manufacturing of immiscible Al-Bi alloy by self-assembled nanoparticles. Mater. Des. 146 (2018), pp. 163–171.
  • C. Chen, B. Lan, K. Liu, H. Wang, X. Guan, S. Dong and P. Luo, A novel aluminum/bismuth subcarbonate/salt composite for hydrogen generation from tap water. J. Alloys Compd. 808 (2019), p. 151733.
  • A.P. Silva, J.E. Spinelli, N. Mangelinck-Noël and A. Garcia, Microstructural development during transient directional solidification of hypermonotectic Al–Bi alloys. Mater. Des. 31 (2010), pp. 4584–4591.
  • R. Dai, S. Zhang, X. Guo and J. Li, Formation of core-type microstructure in Al–Bi monotectic alloys. Mater. Lett. 65 (2011), pp. 322–325.
  • S. Chen, J.-Z. Zhao, H.-X. Jiang and J. He, Microstructure evolution of a ternary monotectic alloy during directional solidification. Acta Metall. Sin. 28 (2015), pp. 316–321.
  • W. Li, H. Jiang, L. Zhang, S. Li, J. He, J. Zhao and F. Ai, Solidification of Al-Bi-Sn immiscible alloy under microgravity conditions of space. Scr. Mater. 162 (2019), pp. 426–431.
  • W. Lu, S. Zhang, W. Zhang, G. Kaptay, J. Yu, Y. Fu and J. Li, Direct observation of the segregation driven by bubble evolution and liquid phase separation in Al–10 wt.% Bi immiscible alloy. Scr. Mater. 102 (2015), pp. 19–22.
  • J. Go, S.-C. Jin, H. Kim, H. Yu and S.H. Park, Novel Mg–Bi–Al alloy with extraordinary extrudability and high strength. J. Alloys Compd 843 (2020), p. 156026.
  • H.-Y. Huang, C.-W. Yang and Y.-C. Peng, Effects on the microstructure and mechanical properties of Sn-0.7 Cu lead-free solder with the addition of a small amount of magnesium. Sci. Eng. Compos. Mater. 23 (2016), pp. 641–647.
  • A.P. Silva, J.E. Spinelli and A. Garcia, Thermal parameters and microstructure during transient directional solidification of a monotectic Al–Bi alloy. J. Alloys Compd. 475 (2009), pp. 347–351.
  • A. Yakovleva, N. Belov, T. Bazlova and I. Shkalei, Effect of low-melting metals (Pb, Bi, Cd, in) on the structure, phase composition, and properties of casting Al–5% Si–4% Cu alloy. Phys. Met. Metallogr. 119 (2018), pp. 35–43.
  • G. Phanikumar, P. Dutta, R. Galun and K. Chattopadhyay, Microstructural evolution during remelting of laser surface alloyed hyper-monotectic Al–Bi alloy. Mater. Sci. Eng. A 371 (2004), pp. 91–102.
  • H. Liao, L. Zhan, F. Xia, M. Huang and C. Liu, Effect of stress relaxation aging on precipitation kinetics of Al–Cu–Li alloy. J. Mater. Eng. Perform. 31 (2022), pp. 3774–3783.
  • D. Zalaoglu and M. Übeyli, Influence of aging and annealing processes on the properties of TiB 2 particulate reinforced aluminum composites produced by powder metallurgy. Kovove Mater. 59 (2021), pp. 21–38.
  • S.K. Panigrahi and R. Jayaganthan, A study on the combined treatment of cryorolling, short-annealing, and aging for the development of ultrafine-grained Al 6063 alloy with enhanced strength and ductility. Metall. Mater. Trans. A 41 (2010), pp. 2675–2690.
  • S.K. Panigrahi and R. Jayaganthan, Influence of solutes and second phase particles on work hardening behavior of Al 6063 alloy processed by cryorolling. Mater. Sci. Eng. A 528 (2011), pp. 3147–3160.
  • S. Gencalp Irizalp and B.K. Koroglu, Stress corrosion cracking behavior of tungsten inert gas welded age-hardenable Aa6061 alloy. J. Eng. Mater. Technol. Trans. ASME 141 (2019), pp. 041003.
  • R.A. Sielski, Research needs in aluminum structure. Sh. Offshore Struct. 3 (2008), pp. 57–65.
  • S.K. Panigrahi, R. Jayaganthan and V. Pancholi, Effect of plastic deformation conditions on microstructural characteristics and mechanical properties of Al 6063 alloy. Mater. Des. 30 (2009), pp. 1894–1901.
  • D.D. Hall and I. Mudawar, Optimization of quench history of aluminum parts for superior mechanical properties. Int. J. Heat Mass Transf. 39 (1996), pp. 81–95.
  • I. Akgun, C. Bolat and A. Göksenli, Effect of aging heat treatment on mechanical properties of expanded glass reinforced syntactic metal foam. Kovove Mater. 59 (2021), pp. 345–355.
  • G.S. Sarmiento, C. Bronzini, A.C. Canale, L.C. Canale and G.E. Totten, Water and polymer quenching of aluminum alloys: A review of the effect of surface condition, water temperature, and polymer quenchant concentration on the yield strength of 7075-T6 aluminum plate. J. ASTM Int. 6 (2009), pp. 1–18.
  • L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Elsevier, London, 2013.
  • A. Biradar, R. Rasiwasia, J. Soni, M. Orłowska and M. Rijesh, Thermomechanical roll bonding of Al-6063 strips. J. Alloys Compd. 855 (2021), p. 157401.
  • N.S. Kumar, G. Pramod, P. Samrat and M. Sadashiva, A critical review on heat treatment of aluminium alloys. Mater. Today: Proc. 58 (2022), pp. 71–79.
  • D. Hall, I. Mudawar, R. Morgan and S. Ehlers, Validation of a systematic approach to modeling spray quenching of aluminum alloy extrusions, composites, and continuous castings. J. Mater. Eng. Perform. 6 (1997), pp. 77–92.
  • Z. Cui, H. Jiang, D. Zhang, Y. Song, D. Yan and L. Rong, Influence of Mn on the negative natural aging effect in 6082 Al alloy. Mater. Sci. Eng. A 793 (2020), p. 139874.
  • T. Camalet, A. Rusinek, R. Bernier, M. Karon, R. Massion, G. Voyiadjis and M. Adamiak, Effect of severe plastic deformation by 120 deg ECAP or shock impact on 6061 aluminum alloy at high strain rates. J. Eng. Mater. Technol. Trans. ASME 140 (2018), p. 041001.
  • J. Zander, R. Sandström and L. Vitos, Modelling mechanical properties for non-hardenable aluminium alloys. Comput. Mater. Sci. 41 (2007), pp. 86–95.
  • G. Yi, M.L. Free, Y. Zhu and A.T. Derrick, Capillarity effect controlled precipitate growth at the grain boundary of long-term aging Al 5083 alloy. Metall. Mater. Trans. A 45 (2014), pp. 4851–4862.
  • S. Nandy, M.A. Bakkar and D. Das, Influence of ageing on mechanical properties of 6063 Al alloy. Mater. Today 2 (2015), pp. 1234–1242.
  • S.K. Panigrahi and R. Jayaganthan, Development of ultrafine-grained Al 6063 alloy by cryorolling with the optimized initial heat treatment conditions. Mater. Des. 32 (2011), pp. 2172–2180.
  • M. Akbari, A. Khalkhali, S.M.E. Keshavarz and E. Sarikhani, The effect of in-process cooling conditions on temperature, force, wear resistance, microstructural, and mechanical properties of friction stir processed A356. Proc. Inst. Mech. Eng. L: J. Mater. Des. Appl. 232 (2018), pp. 429–437.
  • M. Akbari, M.H. Shojaeefard, P. Asadi and A. Khalkhali, Wear performance of A356 matrix composites reinforced with different types of reinforcing particles. J. Mater. Eng. Perform. 26 (2017), pp. 4297–4310.
  • V. Auradi, G. Rajesh and S. Kori, Processing of B4C particulate reinforced 6061aluminum matrix composites by melt stirring involving two-step addition. Procedia Mater. Sci. 6 (2014), pp. 1068–1076.
  • MÂO de Alfaia, R. Oliveira, T.S. Lima, F.E. Mariani, L.C. Casteletti, N. Cheung and A. Garcia, Effects of cooling rate and microstructure scale on wear resistance of unidirectionally solidified Al-3.2 wt.% Bi-(1; 3) wt.% Pb alloys. Mater. Today Commun. 25 (2020), p. 101659.
  • T. Keerthipalli, R. Aepuru and A. Biswas, Review on precipitation, intermetallics and strengthening of aluminum alloys. Proc. Inst. Mech. Eng. B: J. Eng. Manuf. Online First (2022), p. https://doi.org/10.1177/09544054221111901.
  • R.V. Reyes, V.E. Pinotti, C.R. Afonso, L.C. Casteletti, A. Garcia and J.E. Spinelli, Processing, as-cast microstructure and wear characteristics of a monotectic Al-Bi-Cu alloy. J. Mater. Eng. Perform. 28 (2019), pp. 1201–1212.
  • H. Liu, H. Fujii, M. Maeda and K. Nogi, Tensile properties and fracture locations of friction-stir welded joints of 6061-T6 aluminum alloy. J. Mater. Sci. Lett. 22 (2003), pp. 1061–1063.
  • A.B. Spierings, M.U. Schneider and R. Eggenberger, Comparison of density measurement techniques for additive manufactured metallic parts. Rapid Prototyp. J. 17 (2011), pp. 380–386.
  • S. Vijayakumar, S. Anitha, R. Arivazhagan, A.D. Hailu, T. Rao and H.P. Pydi, Wear investigation of aluminum alloy surface layers fabricated through friction stir welding method. Adv. Mater. Sci. Eng. Online First (2022). https://doi.org/10.1155/2022/4120145.
  • B.B. Singh and M. Balasubramanian, Processing and properties of copper-coated carbon fibre reinforced aluminium alloy composites. J. Mater. Process. Technol. 209 (2009), pp. 2104–2110.
  • K. Saksl, D. Vojtěch and H. Franz, Quasicrystal–crystal structural transformation in Al–5 wt.% Mn alloy. J. Mater. Sci. 42 (2007), pp. 7198–7201.
  • F. Zupanič, B. Markoli, I. Naglič, T. Weingärtner, A. Meden and T. Bončina, Phases in the Al-corner of the Al–Mn–Be system. Microsc. Microanal. 19 (2013), pp. 1308–1316.
  • Z. Chen, Y. Hou, B. Xie and Q. Zhang, Dendrite morphology evolution of Al6Mn phase in suction casting Al–Mn alloys. Materials (Basel) 13 (2020), p. 2388.
  • H. Kang, X. Li, Y. Su, D. Liu, J. Guo and H. Fu, 3-D morphology and growth mechanism of primary Al6Mn intermetallic compound in directionally solidified Al-3at.% Mn alloy. Intermetallics 23 (2012), pp. 32–38.
  • S.R. Rana, A. Pattnaik and S. Patnaik, Comparison of wear behaviour and mechanical properties of as-cast Al6082 and Al6082-T6 using statistical analysis. IOP Conf. Ser. Mater. Sci. Eng. (2018), p. 012050.
  • J. Chang, I. Moon and C. Choi, Evolution of microstructure and tensile strength of rapidly solidified Al-4.7 Pct Zn-2.5 Pct Mg-0.25 Pct Zr-X wt Pct Mn alloys. Metall. Mater. Trans. A 29 (1998), pp. 1873–1882.
  • B. Mueller, R. Schaefer and J. Perepezko, The solidification of aluminum-manganese powders. Mater. Res. 2 (1987), pp. 809–817.
  • Y. Tamura, J. Yagi, T. Haitani, T. Motegi, N. Kono, H. Tamehiro and H. Saito, Observation of manganese-bearing particles in molten Az91 magnesium alloy by rapid solidification. Mater. Trans. 44 (2003), pp. 552–557.
  • K. Darling, A. Roberts, L. Armstrong, D. Kapoor, M. Tschopp, L. Kecskes and S. Mathaudhu, Influence of Mn solute content on grain size reduction and improved strength in mechanically alloyed Al–Mn alloys. Mater. Sci. Eng. A 589 (2014), pp. 57–65.
  • H.-Y. Li, C.-T. Zeng, M.-S. Han, J.-J. Liu and X.-C. Lu, Time–temperature–property curves for quench sensitivity of 6063 aluminum alloy. Trans. Nonferrous Met. Soc. China 23 (2013), pp. 38–45.
  • M. Gavgali, Y. Totik and R. Sadeler, The effects of artificial aging on wear properties of Aa 6063 alloy. Mater. Lett. 57 (2003), pp. 3713–3721.
  • G. Bray, M. Glazov, R. Rioja, D. Li and R. Gangloff, Effect of artificial aging on the fatigue crack propagation resistance of 2000 series aluminum alloys. Int. J. Fatigue 23 (2001), pp. 265–276.
  • G.-J. Lee, C.K. Kim, M.K. Lee and C.K. Rhee, Effect of phase stability degradation of bismuth on sensor characteristics of nano-bismuth fixed electrode. Talanta 83 (2010), pp. 682–685.
  • A. Witkowska, J. Rybicki, J. Bosko and S. Feliziani, A molecular dynamics study of lead-bismuth-silicate glasses. IEEE Trans. Dielectr. Electr. Insul. 8 (2001), pp. 385–389.
  • X.-F. Wu, G.-A. Zhang and F.-F. Wu, Influence of Bi addition on microstructure and dry sliding wear behaviors of cast Al-Mg2Si metal matrix composite. Trans. Nonferrous Met. Soc. China 23 (2013), pp. 1532–1542.
  • C. Subramanian, Some considerations towards the design of a wear resistant aluminium alloy. Wear 155 (1992), pp. 193–205.
  • B. Sun, S. Li, H. Imai, J. Umeda and K. Kondoh, Synthesis kinetics of Mg2Si and solid-state formation of Mg–Mg2Si composite. Powder Technol. 217 (2012), pp. 157–162.
  • T. Wang, F. Cao, Z. Chen, H. Kang, J. Zhu, Y. Fu, T. Xiao and T. Li, Three dimensional microstructures and wear resistance of Al-Bi immiscible alloys with different grain refiners. Sci. China Technol. Sci. 58 (2015), pp. 870–875.
  • T.A. Costa, M. Dias, E.S. Freitas, L.C. Casteletti and A. Garcia, The effect of microstructure length scale on dry sliding wear behaviour of monotectic Al-Bi-Sn alloys. J. Alloys Compd. 689 (2016), pp. 767–776.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.