107
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Study of the structural and magnetic properties at high temperature of Ni-Co-Mn-Al Heusler alloy prepared by an unconventional route

&
Pages 153-170 | Received 26 Apr 2022, Accepted 13 Oct 2022, Published online: 27 Oct 2022

References

  • J. Jeevanandam, A. Barhoum, Y.S. Chan, A. Dufresne et M.K. Danquah, Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol. 9 (avr. 2018), pp. 1050–1074. doi:10.3762/bjnano.9.98.
  • F. Casper, T. Graf, S. Chadov, B. Balke et C. Felser, Half-Heusler compounds: novel materials for energy and spintronic applications. Semicond. Sci. Technol. 27(6) (juin 2012), pp. 063001. doi:10.1088/0268-1242/27/6/063001.
  • T. Mizuno, Y. Tsuchiya, T. Machita, S. Hara, D. Miyauchi, K. Shimazawa, T. Chou, K. Noguchi et K. Tagami, Transport and magnetic properties of CPP-GMR sensor with CoMnSi heusler alloy. IEEE Trans. Magn. 44(11) (2008), pp. 3584–3587. doi:10.1109/TMAG.2008.2001655.
  • S. Poon, Recent advances in thermoelectric performance of half-heusler compounds. Metals. (Basel) 8(12) (nov. 2018), pp. 989. doi:10.3390/met8120989.
  • Z. Bai, L. Shen, G. Han et Y.P. Feng, Data storage: Review of heusler compounds. SPIN 02(04) (déc. 2012), pp. 1230006. doi:10.1142/S201032471230006X.
  • C.S. Mejía, A.M. Gomes et L.A.S. de Oliveira, A less expensive NiMnGa based heusler alloy for magnetic refrigeration. J. Appl. Phys. 111(7) (avr. 2012), pp. 07A923. doi:10.1063/1.3675064.
  • W. Wunderlich, Energy harvesting under large temperature gradient – comparison of silicides, half-heusler alloys and ceramics. Energy Harvest. Syst. 2(1-2) (janv. 2015). doi:10.1515/ehs-2014-0013.
  • T. Graf, S.S.P. Parkin et C. Felser, Heusler compounds—A material class with exceptional properties. IEEE Trans. Magn. 47(2) (févr. 2011), pp. 367–373. doi:10.1109/TMAG.2010.2096229.
  • M. Triki, H. Mechri et M. Azzaz, In-situ HT-XRD study of B2 structure of Ni-Co-Mn-Al heusler alloy prepared by mechanical alloying. Mater. Lett. 299 (sept. 2021), pp. 130070. doi:10.1016/j.matlet.2021.130070.
  • M. Triki et M. Azzaz, Effect of Co addition on magneto structural characteristics of Ni50−xCoxMn30Al20 heusler alloys obtained by mechanical alloying process. J. Magn. Magn. Mater. 559 (oct. 2022), pp. 169525. doi:10.1016/j.jmmm.2022.169525.
  • P.J. Webster, Heusler alloys. Contemp. Phys. 10(6) (nov. 1969), pp. 559–577. doi:10.1080/00107516908204800.
  • E. Simon, J.G. Vida, S. Khmelevskyi et L. Szunyogh, Magnetism of ordered and disordered Ni2 MnAl full Heusler compounds. Physical Review B 92(5) (août 2015), pp. 054438. doi:10.1103/PhysRevB.92.054438.
  • W. Jia, S. Chen, L. Wang, F. Shang, X. Sun et D. Yang, Microstructure and properties of Ni-Co-Mn-Al magnetic shape memory alloy prepared by direct laser deposition and heat treatment. Opt. Laser Technol. 141 (sept. 2021), pp. 107119. doi:10.1016/j.optlastec.2021.107119.
  • H.C. Xuan, S.L. Liu, Y.F. Wu, T. Cao, Z.G. Xie, X.H. Liang, P.D. Han, F.H. Chen, C.L. Zhang, D.H. Wang, et al., Martensitic transformation and magnetoresistance in Ni40Mn44-xCoxAl16 heusler alloys. Solid State Commun. 294 (2019), pp. 11–15. doi:10.1016/j.ssc.2019.03.003.
  • M. Halder, M.D. Mukadam, K.G. Suresh et S.M. Yusuf, Electronic, structural, and magnetic properties of the quaternary heusler alloy NiCoMnZ (Z=Al, Ge, and Sn). J. Magn. Magn. Mater. 377 (mars 2015), pp. 220–225. doi:10.1016/j.jmmm.2014.10.107.
  • Y. Kim, E.J. Kim, K. Choi, W.B. Han, H.-S. Kim, Y. Shon et C.S. Yoon, Room-temperature magnetocaloric effect of Ni–Co–Mn–Al heusler alloys. J. Alloys Compd 616 (2014), pp. 66–70. doi:10.1016/j.jallcom.2014.07.034.
  • H.C. Xuan, F.H. Chen, P.D. Han, D.H. Wang et Y.W. Du, Effect of Co addition on the martensitic transformation and magnetocaloric effect of Ni–Mn–Al ferromagnetic shape memory alloys. Intermetallics 47 (avr. 2014), pp. 31–35. doi:10.1016/j.intermet.2013.12.007.
  • X. Xu, W. Ito, M. Tokunaga, R.Y. Umetsu, R. Kainuma et K. Ishida, Kinetic arrest of martensitic transformation in NiCoMnAl metamagnetic shape memory alloy. Mater. Trans. 51(7) (2010), pp. 1357–1360. doi:10.2320/matertrans.M2010098.
  • F. Czerwinski, ed. Heat Treatment - Conventional and Novel Applications, InTech, Rijeka, Croatia, 2012. doi:10.5772/2798.
  • M.V. Lyange, E.S. Barmina et V.V. Khovaylo, Structural and magnetic properties of Ni-Mn-Al Heusler alloys: A review. Mater. Sci. Found 81–82 (mars 2015), pp. 232–242. d oi:10.40 28/ww w.scientific.net/MSFo.81-82.232.
  • R. Kainuma, K. Ishida et H. Nakano, Martensitic transformations in NiMnAl β phase alloys. Metallurgical and Materials Transactions A 27(12) (déc. 1996), pp. 4153–4162. doi:10.1007/BF02595663.
  • X.Y. Dong, J.W. Dong, J.Q. Xie, T.C. Shih, S. McKernan, C. Leighton et C.J. Palmstrøm, Growth temperature controlled magnetism in molecular beam epitaxially grown Ni2MnAl heusler alloy. J. Cryst. Growth 254(3-4) (2003), pp. 384–389. doi:10.1016/S0022-0248(03)01172-2.
  • P. Czaja, J. Przewoźnik et M. Fitta, Heat treatment effect on the evolution of magnetic properties of martensite in magnetic shape memory Ni48Mn39.5Sn9.5Al3 heusler alloy ribbons. Mater. Res. Bull. 135 (mars 2021), pp. 111120. doi:10.1016/j.materresbull.2020.111120.
  • L. Straka, L. Fekete, M. Rameš, E. Belas et O. Heczko, Magnetic coercivity control by heat treatment in heusler Ni–Mn–Ga(–B) single crystals. Acta Mater. 169 (mai 2019), pp. 109–121. doi:10.1016/j.actamat.2019.02.045.
  • Magnetism and Magnetic Materials, (1re éd.), Cambridge, UK: Cambridge University Press, 2001. doi:10.1017/CBO9780511845000.
  • G. Herzer, Nanocrystalline soft magnetic materials. J. Magn. Magn. Mater. 112(1–3) (juill. 1992), pp. 258–262. doi:10.1016/0304-8853(92)91168-S.
  • C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46(1-2) (janv. 2001), pp. 1–184. doi:10.1016/S0079-6425(99)00010-9.
  • M. Abdellaoui et E. Gaffet, Mechanical alloying in a planetary ball mill: Kinematic description. J. Phys. IV 04(C3) (févr. 1994), pp. C3-291–C3-296. doi:10.1051/jp4:1994340.
  • J.B. Fogagnolo, F. Velasco, M.H. Robert et J.M. Torralba, Effect of mechanical alloying on the morphology, microstructure and properties of aluminium matrix composite powders. Mater. Sci. Eng. A 342(1-2) (févr. 2003), pp. 131–143. doi:10.1016/S0921-5093(02)00246-0.
  • M. Triki, H. Mechri, H. Azzaz et M. Azzaz, Characterization of nanostructured magnetic alloy based on Ni-Co-Mn produced by mechanical synthesis. J. Magn. Magn. Mater. 541 (janv. 2022), pp. 168514. doi:10.1016/j.jmmm.2021.168514.
  • R. Kumari, Particle size and shape analysis using imagej with customized tools for segmentation of particles. International Journal of Engineering Research and V4(11) (nov. 2015), pp. IJERTV4IS110211. doi:10.17577/IJERTV4IS110211.
  • G.K. Williamson et W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1) (janv. 1953), pp. 22–31. doi:10.1016/0001-6160(53)90006-6.
  • D.E. Laughlin, K. Srinivasan, M. Tanase et L. Wang, Crystallographic aspects of L10 magnetic materials. Scr. Mater. 53(4) (août 2005), pp. 383–388. doi:10.1016/j.scriptamat.2005.04.039.
  • C. Felser et A. Hirohata, (Éd.), Heusler Alloys: Properties, Growth, Applications (Vol. 222), Springer International Publishing, Cham, 2016. doi:10.1007/978-3-319-21449-8.
  • P. Le Brun, L. Froyen et L. Delaey, The modelling of the mechanical alloying process in a planetary ball mill: comparison between theory and in-situ observations. Mater. Sci. Eng. A 161(1) (mars 1993), pp. 75–82. doi:10.1016/0921-5093(93)90477-V.
  • The release of energy during annealing of deformed metals. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 232(1189) (oct. 1955), pp. 252–270. doi:10.1098/rspa.1955.0216.
  • H.K.D.H. Bhadeshia, Some phase transformations in steels. Mater. Sci. Technol. 15(1) (janv. 1999), pp. 22–29. doi:10.1179/026708399773002773.
  • A. Okubo, X. Xu, R.Y. Umetsu, T. Kanomata, K. Ishida et R. Kainuma, Magnetic properties of Co50−xNixMn25Al25alloys withB2 structure. J. Appl. Phys. 109(7) (avr. 2011), pp. 07B114. doi:10.1063/1.3559536.
  • X. Xu, W. Ito, T. Kanomata et R. Kainuma, Entropy change during martensitic transformation in Ni50−xCoxMn50−yAly metamagnetic shape memory alloys. Entropy 16(3) (mars 2014), pp. 1808–1818. doi:10.3390/e16031808.
  • M. Acet, E. Duman, E.F. Wassermann, L. Mañosa et A. Planes, Coexisting ferro- and antiferromagnetism in Ni2MnAl heusler alloys. J. Appl. Phys. 92(7) (oct. 2002), pp. 3867–3871. doi:10.1063/1.1504498.
  • L. Mañosa, A. Planes, M. Acet, E. Duman et E.F. Wassermann, Magnetic properties and martensitic transition in annealed Ni50Mn30Al20. J. Appl. Phys. 93(10) (mai 2003), pp. 8498–8500. doi:10.1063/1.1555977.
  • X. Xu, W. Ito, M. Tokunaga, T. Kihara, K. Oka, R. Umetsu, T. Kanomata et R. Kainuma, The thermal transformation arrest phenomenon in NiCoMnAl heusler alloys. Metals. (Basel) 3(3) (2013), pp. 298–311. doi:10.3390/met3030298.
  • R. Kainuma, W. Ito, R.Y. Umetsu, K. Oikawa et K. Ishida, Magnetic field-induced reverse transformation in B2-type NiCoMnAl shape memory alloys. Appl. Phys. Lett. 93(9) (sept. 2008), pp. 091906. doi:10.1063/1.2965811.
  • R. Besmel, M. Ghaffari, H. Shokrollahi, B. Chitsazan et L. Karimi, Influence of milling time on the structural, microstructural and magnetic properties of mechanically alloyed Ni58Fe12Zr10Hf10B10 nanostructured/amorphous powders. J. Magn. Magn. Mater. 323(22) (nov. 2011), pp. 2727–2733. doi:10.1016/j.jmmm.2011.05.025.
  • D. Lewis et E.J. Wheeler, The effect of temperature on microstrains and crystallite growth in alumina. J. Mater. Sci. 4(8) (août 1969), pp. 681–684. doi:10.1007/BF00742423.
  • S.P. Gubin, ed. Magnetic Nanoparticles (1re éd), Wiley, Berlin, Germany, 2009. doi:10.1002/9783527627561.
  • V.G. Bar’yakhtar, A.N. Bogdanov et D.A. Yablonskii, The physics of magnetic domains. Uspekhi Fizicheskih Nauk 156(9) (1988), pp. 47–92. doi:10.3367/UFNr.0156.198809b.0047.
  • D. Tobia, E. De Biasi, M. Granada, H.E. Troiani, G. Zampieri, E. Winkler et R.D. Zysler, Evolution of the magnetic anisotropy with particle size in antiferromagnetic Cr2O3 nanoparticles. J. Appl. Phys. 108(10) (2010), pp. 104303. doi:10.1063/1.3506535.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.