105
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

The Hubbard model: exact constraints on spectral moments in the strong coupling limit

Pages 266-285 | Received 23 Mar 2022, Accepted 05 Oct 2022, Published online: 19 Nov 2022

References

  • J. Hubbard, Electron correlations in narrow energy bands. Proc. Roy. Soc. (London) A276 (1963), pp. 238–257.
  • J. Hubbard, Electron correlations in narrow energy bands III. An improved solution. Proc. Roy. Soc. (London) A281 (1964), pp. 401–419.
  • M. Cyrot, The Hubbard Hamiltonian. Phys. B&C (1977), pp. 141–150. doi:10.1016/0378-4363(77)90177-2
  • M. Imada, A. Fujimori and Y. Tokura, Metal-insulator transitions. Rev. Modern Phys 70 (1998), pp. 1039–1263. doi:10.1103/RevModPhys.70.1039
  • J.P.F. LeBlanc, et al., Solutions of the Two-dimensional hubbard model: Benchmarks and results from a wide range of numerical algorithms. Phys. Rev 5 (2015), pp. 041041. doi:10.1103/PhysRevX.5.041041
  • O. Gunnarsson, J. Merino, T. Schafer, G. Sangiovanni, G. Rohringer and A. Toschi, Complementary views on electron spectra: From fluctuation diagnostics to real-space correlations. Phys. Rev. B 97 (2018), pp. 125134. doi:10.1103/PhysRevB.97.125134
  • A. Georges, G. Kotliar, W. Krauth and M.J. Rozenberg, Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Modern Phys 68 (1996), pp. 13–125. doi:10.1103/RevModPhys.68.13
  • A. Georges, Strongly correlated electron materials. arXiv:cond-mat/0403123v1 (2004).
  • G. Knizia and G.K. Chan, Density matrix embedding: A simple alternative to dynamical mean-field theory. Phys. Rev. Lett 109 (2012), pp. 186401. doi:10.1103/PhysRevLett.109.186404
  • T.A. Maier, M. Jarrell, T. Prushke and M. Hettler, Quantum cluster theories. Rev. Modern Phys 77 (2005), pp. 1027–1080. doi:10.1103/RevModPhys.77.1027
  • D.M. Esterling, Hubbard model near the atomic limit. Phys. Rev. B 2 (1970), pp. 4686–4688. doi:10.1103/PhysRevB.2.4686
  • A.B. Harris and R.V. Lange, Single-Particle excitations in narrow energy bands. Phys. Rev 157 (1967), pp. 295–314. doi:10.1103/PhysRev.157.295
  • W. Metzner, Linked-cluster expansion around the atomic limit of the Hubbard model. Phys. Rev. B 43 (1991), pp. 8549–8563. doi:10.1103/PhysRevB.43.8549
  • S. Pairault, D. Senechal and A.-M.S. Tremblay, Strong-coupling perturbation theory of the Hubbard model. Eur. Phys. J. B 16 (2000), pp. 85–105. doi:10.1007/s100510070253
  • A.M. Shvaika, Strong-coupling approach for strongly correlated electron systems. Phys. Rev. B 62 (2000), pp. 2358–2371. doi:10.1103/PhysRevB.62.2358
  • T.D. Stanescu and G. Kotliar, Strong coupling theory for interacting lattice models. Phys. Rev. B 70 (2004), pp. 205112. doi:10.1103/PhysRevB.70.205112
  • X. Dai, K. Haule and G. Kotliar, Strong-coupling solver for the quantum impurity model. Phys. Rev. B 72 (2005), pp. 045111. doi:10.1103/PhysRevB.72.045111
  • J.-N. Zhuang, Q.-M. Lin, Z. Fang and X. Dai, Fast impurity solver for dynamical mean field theory based on second order perturbation around the atomic limit. Chin. Phys. B 19 (2010), pp. 087104. doi:10.1088/1674-1056/19/8/087104
  • A. Sherman, The Hubbard model in the strong coupling theory at arbitrary filling. Phys. Stat. Sol. B 252 (2015), pp. 2006–2012. doi:10.1002/pssb.201552026
  • H. Tasaki, The Hubbard model - an introduction and selected rigorous results. J. Phys. Condens. Matter 10 (1998), pp. 4353–4378. doi:10.1088/0953-8984/10/20/004
  • S. Di Matteo and Y. Claveau, An exact sum-rule for the Hubbard model: An historical/pedagogical approach. Eur. J. Phys 38 (2017), pp. 045501. doi:10.1088/1361-6404/aa6900
  • D.M. Esterling and H.C. Dubin, Moment-Generated solution to the hubbard narrow-energy-band model. Phys. Rev. B 6 (1972), pp. 4276–4283. doi:10.1103/PhysRevB.6.4276
  • J.G. Wright and B.S. Shastry. DiracQ: A quantum many body physics package, arXiv:1301.4494 [cond-mat.str-el] (2013).
  • R. Tahir-Kheli and H. Jarrett, Moment-conserving decoupling procedure for many-body problems. Phys. Rev 180 (1969), pp. 544–546. doi:10.1103/PhysRev.180.544
  • W. Nolting, Methode der Spektralmomente für das Hubbard-Modell eines schmalenS-Bandes. Z. Phys 255 (1972), pp. 25–39. doi:10.1007/BF01391669
  • M. Potthoff and W. Nolting, The large-U Hubbard model for a semi-infinite crystal: A moment approach and an energy-dependent recursion method. J. Phys. Condens. Matter 8 (1996), pp. 4937–4958. doi:10.1088/0953-8984/8/27/006
  • M. Potthoff, T. Herrmann, T. Wegner and W. Nolting, The moment Sum rule and Its consequences for ferromagnetism in the hubbard model. Phys. Stat. Sol. (b) 210 (1998), pp. 199–228. doi:10.1002/(SICI)1521-3951(199811)210:1<199::AID-PSSB199>3.0.CO;2-3
  • H. Barman, Local moment approach as a quantum impurity solver for the Hubbard model. Phys. Rev 94 (2016), pp. 045106. doi:10.1103/PhysRevB.94.045106
  • E. Koch, G. Sangiovanni and O. Gunnarsson, Sum rules and bath parametrization for quantum cluster theories. Phys. Rev. B 78 (2008), pp. 115102. doi:10.1103/PhysRevB.78.115102
  • O.J. Backhouse and G.H. Booth. Constructing ‘full frequency’ spectra via moment constraints for coupled cluster Green’s functions, arXiv:/2206.13198 [physics.chem-ph] (2022).
  • P.V. Sriluckshmy, M. Nusspickel, E. Fertitta and G.H. Booth, Fully algebraic and self-consistent effective dynamics in a static quantum embedding. Phys. Rev. B 103 (2021), pp. 085131. doi:10.1103/PhysRevB.103.085131
  • M. Nusspickel and G.H. Booth, Systematic improvability in quantum embedding for real materials. Phys. Rev. X12 (2022), pp. 011046.
  • K.A. Chao, J. Spalek and A.M. Oles, Kinetic exchange interaction in a narrow s-band. J. of Phys. C: Solid State Physics 10 (1977), pp. L271–L276. doi:10.1088/0022-3719/10/10/002
  • F. Kammler and K. Elk, Numerical results of the hubbard III approximation for arbitrary values of the correlation energy and the electron density (with application to disordered alloys). Phys. Stat. Sol. (b) 81 (1977), pp. 179–184. doi:10.1002/pssb.2220810117
  • F. Mancini and A. Avella, The Hubbard model within the equations of motion approach. Adv. In Phys 53 (2004), pp. 537–768. doi:10.1080/00018730412331303722
  • H.O. Jeschke and G. Kotliar, Decoupling method for dynamical mean-field theory calculations. Phys. Rev. B 71 (2005), pp. 085103. doi:10.1103/PhysRevB.71.085103
  • Q. Feng, Y.Z. Zhang and H.O. Jeschke, Fast impurity solver based on equations of motion and decoupling. Phys. Rev. B 79 (2009), pp. 235112. doi:10.1103/PhysRevB.79.235112
  • D. Hou, R. Wang, X. Zheng, N.H. Tong, J.H. Wei and Y.J. Yan, Hierarchical equations of motion for an impurity solver in dynamical mean-field theory. Phys. Rev. B 90 (2014), pp. 045141. doi:10.1103/PhysRevB.90.045141
  • D.M. Edwards and A.C. Hewson, Comment on hubbard's theory of the mott transition. Rev. Modern Phys 40 (1968), pp. 810–811. doi:10.1103/RevModPhys.40.810
  • W. Metzner and D. Vollhardt, Correlated lattice fermions in D=infinity dimensions. Phys. Rev. Letters 62 (1989), pp. 324–327. doi:10.1103/PhysRevLett.62.324
  • E. Müller-Hartmann, Correlated fermions on a lattice in high dimensions. Z. Phys. B: Condens. Matter 74 (1989), pp. 507–512. doi:10.1007/BF01311397
  • M. Bumgartel, K. Ghanem, A. Kiani, E. Koch, E. Pavarini, H. Sims and G. Zhang, Massively parallel simulations of strong electronic correlations: Realistic Coulomb vertex and multiplet effects. Eur. Phys. J. Special Topics 226 (2017), pp. 2525–2547. doi:10.1140/epjst/e2016-60311-8
  • L.F. Arsenault, A. Lopez-Bezanilla, O.A. von Lilienfeld and A.J. Millis, Machine learning for many-body physics: The case of the Anderson impurity model. Phys. Rev. B 90 (2014), pp. 155136. doi:10.1103/PhysRevB.90.155136
  • T. Mertz, K. Zantout and R. Valenti, Self-energy dispersion in the Hubbard model. Phys Rev. B 98 (2018), pp. 235105. doi:10.1103/PhysRevB.98.235105
  • H. Park, K. Haule, C.A. Marianetti and G. Kotliar, Dynamical mean-field theory study of Nagaoka ferromagnetism. Phys. Rev. B 77 (2008), pp. 035107. doi:10.1103/PhysRevB.77.035107

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.