107
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Effects of applied magnetic field and pressure on the diamagnetic susceptibility and binding energy of donor impurity in GaAs quantum dot considering the non-parabolicity model’s influence

, ORCID Icon, ORCID Icon, , &
Pages 286-303 | Received 27 Aug 2022, Accepted 18 Oct 2022, Published online: 13 Nov 2022

References

  • L. Lou, L. Wang, L.P.F. Chibante, R.T. Laaksonen, P. Nordlander and R.E. Smalley, Electronic structure of small GaAs clusters. J. Chem. Phys. 94 (1991), pp. 8015–8020.
  • S. Francoeur, M.-J. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk and T. Tiedje, Band gap of GaAs1−xBix. Appl. Phys. Lett. 82 (2003), pp. 3874–3876.
  • U. Pietsch and N. Hansen, A critical review of the experimental valence charge density of GaAs. Acta Crystallogr. Sect. B-Struct. Sci. 52 (1996), pp. 596–604.
  • J.H. English, C.A. Gossard, L.H. Störmer and W.K. Baldwin, Gaas structures with electron mobility of 5× 106 cm2/V s. Appl. Phys. Lett. 50 (1987), pp. 1826–1828.
  • D. Richman, Dissociation pressures of GaAs, GaP and InP and the nature of III–V melts. J. Phys. Chem. Solids 24 (1963), pp. 1131–1139.
  • M. Yamaguchi, High-efficiency GaAs-based solar cells. Post-Transit. Met. (2020). DOI: 10.5772/intechopen.94365.
  • S.-T. Hwang, S. Kim, H. Cheun, H. Lee, B. Lee, T. Hwang, S. Lee, W. Yoon, H.-M. Lee and B. Park, Bandgap grading and Al0. 3Ga0. 7As heterojunction emitter for highly efficient GaAs-based solar cells. Sol. Energy Mater. Sol. Cells 155 (2016), pp. 264–272.
  • Y. Hasegawa, T. Egawa, T. Jimbo and M. Umeno, GaAs-based LED on Si substrate with GaAs islands active region by droplet-epitaxy. Appl. Surf. Sci. 100–101 (1996). pp. 482.
  • G. Liu, K. Guo, L. Xie, Z. Zhang and L. Lu, Tunability of linear and nonlinear optical absorption in laterally-coupled AlxGa1- xAs/GaAs quantum wires. J. Alloys Compd. 746 (2018), pp. 653–659.
  • F. Hartmann, F. Langer, D. Bisping, A. Musterer, S. Höfling, M. Kamp, A. Forchel and L. Worschech, Gaas/AlGaAs resonant tunneling diodes with a GaInNAs absorption layer for telecommunication light sensing. Appl. Phys. Lett. 100 (2012), pp. 172113.
  • S. Mohammadi, J.-W. Park, D. Pavlidis, J.-L. Guyaux and J.C. Garcia, Design optimization and characterization of high-gain GaInP/GaAs HBT distributed amplifiers for high-bit-rate telecommunication. IEEE Trans. Microw. Theory Tech. 48 (2000), pp. 1038–1044.
  • J. Nowotny, M.A. Alim, T. Bak, M.A. Idris, M. Ionescu, K. Prince, M.Z. Sahdan, K. Sopian, M.A.M. Teridi and W. Sigmund, Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion. Chem. Soc. Rev. 44 (2015), pp. 8424–8442.
  • S.T. Pantelides, The electronic structure of impurities and other point defects in semiconductors. Rev. Mod. Phys. 50 (1978), pp. 797–858.
  • R.-A. Eichel, Characterization of defect structure in acceptor-modified piezoelectric ceramics by multifrequency and multipulse electron paramagnetic resonance spectroscopy. J. Am. Ceram. Soc. 91 (2008), pp. 691–701.
  • P. Capper, O.S. Kasap and A. Willoughby, Zinc Oxide Materials for Electronic and Optoelectronic Device Applications, John Wiley & Sons, New York, 2011.
  • J.P. Taylor, A.W. Jesser, D.J. Benson, M. Martinka, H.J. Dinan, J. Bradshaw, M. Lara-Taysing, P.R. Leavitt, G. Simonis and W. Chang, Optoelectronic device performance on reduced threading dislocation density GaAs/Si. J. Appl. Phys. 89 (2001), pp. 4365–4375.
  • S. M’zerd, J.S. Edrissi, Y. Chrafih, K. Rahmani, M. Khenfouch, I. Zorkani and A. Jorio, Shape effects on the diamagnetic susceptibility in inhomogeneous quantum dots. J. Phys. Conf. Ser. 1292 (2019), pp. 012003.
  • K. Rahmani and I. Zorkani. Magnetic and electric field effects on the binding energy of a shallow donor in quantum dot-quantum well, 2009.
  • K. El-Bakkari, A. Sali, E. Iqraoun and A. Ezzarfi, Polaron and conduction band non-parabolicity effects on the binding energy, diamagnetic susceptibility and polarizability of an impurity in quantum rings. Superlattices Microstruct. 148 (2020), pp. 106729.
  • Y. Chrafih, K. Rahmani, M. Khenfouch, S. Janati Edrissi, I. Zorkani, M. Adar and M. Boulghallat, The hydrostatic pressure and magnetic field effect on the diamagnetic susceptibility of a shallow donor in GaAs/AlAs quantum Box. J. Phys: Conf. Ser. 1292 (2019). https://iopscience.iop.org/article/10.1088/1742-6596/1292/1/012001
  • D. Merwyn Jasper and A. Reuben, Diamagnetic susceptibility of low-lying states of a donor impurity in a core shell GaAs/Al1-xGaxAs quantum dot. Mater. Today Proc. 33 (2020), pp. 4020–4022.
  • M. Solaimani, Binding energy and diamagnetic susceptibility of donor impurities in quantum dots with different geometries and potentials. Mater. Sci. Eng. B 262 (2020), pp. 114694.
  • E. Kilicarslan, S. Şakiroglu, E. Kasapoglu, H. Sari and I. Sökmen, The effect of nitrogen on the diamagnetic susceptibility of a donor in GaxIn1−xNyAs1−y/GaAs quantum well under the magnetic field. Superlattices Microstruct. 48 (2010), pp. 305–311.
  • G. Safarpour, M. Barati, M. Moradi, S. Davatolhagh and A. Zamani, Binding energy and diamagnetic susceptibility of an on-center hydrogenic donor impurity in a spherical quantum dot placed at the center of a cylindrical nano-wire. Superlattices Microstruct. 52 (2012), pp. 387–397.
  • A. Mmadi, K. Rahmani, I. Zorkani and A. Jorio, Diamagnetic susceptibility of a magneto-donor in inhomogeneous quantum dots. Superlattices Microstruct. 57 (2013), pp. 27–36.
  • R. En-Nadir, H. El Ghazi, A. Jorio and I. Zorkani, Ground-state shallow-donor binding energy in (In, Ga) N/GaN double QWs under temperature, size, and the impurity position effects. J. Model. Simul. Mater. 4 (2021), pp. 1–6.
  • N. Amin and A.J. Peter, Structure dependent third order nonlinear susceptibility in the presence of impurity and magnetic field in CdS/ZnS core/shell quantum dot. Phys. B Condens. Matter 643 (2022), pp. 414162.
  • S. Edrissi, S. Mzerd, I. Zorkani, K. Rahmani, Y. Chrafih and A. Jorio, Pressure effect on the diamagnetic susceptibility of donor in HgS and GaAs cylindrical quantum dot. J. Nanophotonics 13 (2019), pp. 1.
  • M.A. Elabsy and B.E. Elkenany, Effect of the nonparabolicity on the resonant lifetimes and resonant energies of symmetric GaAs/AlxGa1-xAs double barrier nanostructures. Phys. B Condens. Matter 632 (2022), pp. 413711.
  • R. Charrour, M. Bouhassoune, M. Fliyou and A. Nougaoui, Magnetic field effect on the binding energy of a hydrogenic impurity in cylindrical quantum dot. Phys. B Condens. Matter 293 (2000), pp. 137–143.
  • G. Li, V.S. Branis and K.K. Bajaj, Hydrogenic donor states in quantum dots in the presence of a magnetic field. Phys. Rev. B 47 (1993), pp. 15735–15740.
  • E.M. Rensink, Electron eigenstates in uniform magnetic fields. Am. J. Phys. 37 (1969), pp. 900–904.
  • E.H. Ghazi, A. Jorio and I. Zorkani, Theoretical investigation of stark effect on shallow donor binding energy in InGaN spherical QD-QW. Phys. B Condens. Matter 422 (2013), pp. 47–50.
  • C. Kittel, Introduction to Solid State Physics, Wiley, Hoboken, NJ, 2005.
  • U. Yesilgul, F. Ungan, E. Kasapoglu, H. Sari and İ Sökmen, The effects of temperature and hydrostatic pressure on the diamagnetic susceptibility of a donor in a quantum well. Surf. Rev. Lett. 18 (2011), pp. 147–152.
  • M. Koksal, E. Kilicarslan, H. Sari and I. Sokmen, Magnetic-field effect on the diamagnetic susceptibility of hydrogenic impurities in quantum well-wires. Phys. B Condens. Matter 404 (2009), pp. 3850–3854.
  • A. Zounoubi, K.E. Messaoudi, I. Zorkani and A. Jorio, Magnetic field and finite barrier-height effects on the polarizability of a shallow donor in a GaAs quantum wire. Superlattices Microstruct. 30 (2001), pp. 189–200.
  • L. Belamkadem, O. Mommadi, R. Boussetta, S. Chouef, M. Chnafi, A. El Moussaouy, J.A. Vinasco, D. Laroze, C.A. Duque, C. Kenfack-Sadem, R.M. Keumo Tsiaze, F.C. Fobasso Mbognou and A. Kerkour El-Miad, The intensity and direction of the electric field effects on off-center shallow-donor impurity binding energy in wedge-shaped cylindrical quantum dots. Thin Solid Films 757 (2022), pp. 139396.
  • D.B. Hayrapetyan, A. Achoyan, E.M. Kazaryan and H. Tevosyan, Electronic states in a cylindrical quantum dot with the modified pöschl-teller potential in the presence of external magnetic field. J. Contemp. Phys. Armen. Acad. Sci. 48 (2013), pp. 285–290.
  • B.M. Yücel, S. Sakiroglu, H. Sari, A.C. Duque and E. Kasapoglu, Influence of external fields on the exciton binding energy and interband absorption in a double inverse parabolic quantum well. Phys. E Low-Dimens. Syst. Nanostructures 144 (2022), pp. 115433.
  • I. Zorkani, A. Mdaa and R. Elkhenifer, Finite-barrier height effect on the magnetoabsorption of a shallow donor in a quantum well wire. Phys. Status Solidi B 215 (1999), pp. 1005–1011.
  • A.J. Peter and J. Ebenezar, Diamagnetic susceptibility of a confined donor in a quantum dot with different confinements. J. Sci. Res. 1 (2009), pp. 200–208.
  • S.J. Edrissi, I. Zorkani, K. Rahmani, A. Mmadi, Y. Chrafih, A. Jorio and L. Leontie. The effect of hydrostatic pressure on the diamagnetic susceptibility of a magneto-donor in a GaAs cylindrical quantum dot 5.
  • K. Rahmani, I. Zorkani and A. Jorio, Diamagnetic susceptibility of a magneto-donor in inhomogeneous quantum dots. Phys. Scr. 83 (2011), pp. 035701.
  • G.-X. Wang and P. Zhang, Hydrogenic impurity binding energy in GaAs quantum rings. Int. J. Mod. Phys. B 25 (2011), pp. 4687–4695.
  • A. Jeice, S. Jayam and K. Wilson, Polaronic effects on diamagnetic susceptibility of a hydrogenic donor in nanostructures. Indian J. Phys. 90 (2016), pp. 805–809.
  • A. Mmadi, K. Rahmani, I. Zorkani and A. Jorio, Diamagnetic susceptibility of a magneto-donor in inhomogeneous quantum dots. Superlattices Microstruct. 57 (2013), pp. 27–36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.