158
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Theoretical study on the tendency of heat capacity of nanostructures using modified Debye's method

, ORCID Icon & ORCID Icon
Pages 335-349 | Received 05 May 2022, Accepted 03 Nov 2022, Published online: 23 Nov 2022

References

  • Simon Steven H, The Oxford solid state basics, OUP Oxford, Oxford, 2013.
  • M. Planck, Vorlesungen über die Theorie der Wärmestrahlung, JA Barth, Leipzig, 1921.
  • A. Brager and A. Schuchowitzky, Acta Physicochimica U.R.S.S. 21(1001) (1946), pp. 13.
  • J.S. Dugdale, J.A. Morrison, and D Patterson, The effect of particle size on the heat capacity of titanium dioxide, Proc. R. Soc. Lond. A. Math. Phys. Sci. 224(1157) (1954), pp. 228–235.
  • M. Dupuis, R. Mazo, and L. Onsager, Surface specific heat of an isotropic solid at low temperatures, J. Chem. Phys. 33(5) (1960), pp. 1452–1461.
  • V. Novotny and P.P.M. Meincke, Thermodynamic lattice and electronic properties of small particles, Phys. Rev. B. 8(9) (1973), pp. 4186.
  • Heinrich P. Baltes and E.R. Hilf, Specific heat of lead grains, Solid State Commun. 12(5) (1973), pp. 369–373.
  • R. Lautehschläger, Improved theory of the vibrational specific heat of lead grains, Solid State Commun. 16(12) (1975), pp. 1331–1334.
  • H.Z. Zhang and J.F. Banfield, A model for exploring particle size and temperature dependence of excess heat capacities of nanocrystalline substances, Nanostructured Materials 10(2) (1998 Feb), pp. 185–194.
  • R.S. Prasher and P.E. Phelan, Non-dimensional size effects on the thermodynamic properties of solids, Int. J. Heat Mass Transf. 42(11) (1999 Jun), pp. 1991–2001.
  • B.X. Wang, L.P. Zhou, and X.F. Peng, Surface and size effects on the specific heat capacity of nanoparticles, Int. J. Thermophys. 27(1) (2006), pp. 139–151.
  • Z. Fan, A. O. Yalcin, F. D. Tichelaar, H. W. Zandbergen, E. Talgorn, A. J. Houtepen, T. J. H. Vlugt, and M. A. van Huis, From sphere to multipod: Thermally induced transitions of cdse nanocrystals studied by molecular dynamics simulations, J. Am. Chem. Soc. 135(15) (2013 Apr), pp. 5869–5876.
  • Yu Ya. Gafner, S.L. Gafner, I.S. Zamulin, L.V. Redel, and V.S. Baidyshev, Analysis of the heat capacity of nanoclusters of fcc metals on the example of al, ni, cu, pd, and au, Phys. Met. Metallogr. 116(6) (2015 Jun), pp. 568–575.
  • R. Hotz and R. Siems, Density of states and specific heat of elastic vibrations in layer structures, Superlattices Microstruct. 3(4) (1987), pp. 445–454.
  • B.S. Tošić, J.P. Šetrajčić, D.L.j. Mirjanić, and Z.V. Bundalo, Low-temperature properties of thin films, Phys. A: Stat. Mech. Appl 184(3–4) (1992), pp. 354–366.
  • R.S. Prasher and P.E. Phelan, Non-dimensional size effects on the thermodynamic properties of solids, Int. J. Heat Mass Transf. 42(0017-9310) (1999), pp. 1991–2001.
  • W. DeSorbo and W.W. Tyler, The specific heat of graphite from 13 to 300 k, J. Chem. Phys.21(10) (1953), pp. 1660–1663.
  • R. Lagnier, C. Ayache, J-Y. Harbec, S. Jandl, and J-P. Jay-Gerin, Specific heat of the semiconducting layered compound snse2 at low temperatures, Solid State Commun. 48(1) (1983), pp. 65–68.
  • R.S. Prasher and P.E. Phelan, Size effects on the thermodynamic properties of thin solid films, J. Heat Transf. 120(4) (1998 Nov), pp. 1078–1086.
  • W. Y. Lingyi Lu, Z. Dian-lin, Z. Pan, and S. Xie, Linear specific heat of carbon nanotubes, J. Phys. Condens. Matter 59 (14) (1999), pp. R9015.
  • C. Dames, B. Poudel, W. Z. Wang, J. Y. Huang, Z. F. Ren, Y. Sun, J. I. Oh, C. Opeil, M. J. Naughton, and G. Chen, Low-dimensional phonon specific heat of titanium dioxide nanotubes, Appl. Phys. Lett.87(3) (2005), pp. 705.
  • G.H. Comsa, D. Heitkamp, and H.S. Räde, Effect of size on the vibrational specific heat of ultrafine palladium particles, Solid State Commun. 24(8) (1977), pp. 547–550.
  • V. Novotny, P.P.M. Meincke, and J.H.P. Watson, Effect of size and surface on the specific heat of small lead particles, Phys. Rev. Lett. 28(14) (1972), pp. 901.
  • K. Ohshima, T. Kuroishi, and T. Fujita, Superconducting transition temperature of aluminium fine particles, J. Phys. Soc. Japan 41(4) (1976), pp. 1234–1236.
  • M.A. Hove, W.H. Weinberg, and C.M. Chan, Low-energy electron diffraction: Experiment, theory and surface structure determination, Springer-Verlag, Berlin, 1986.
  • A. Tanaka, A. Chainani, T. Miura, T. Takahashi, and M. Michailov, Two-dimensional overgrowth in the low submonolayer range: The case of c(2x2)−pb/cu(110), Surf. Sci. 324(1) (1995), pp. 1–7.
  • M. Michailov and I. Avramov, Surface energy, surface debye temperature and specific heat of nanocrystals, J. Phys. Conf. 398 (2012), pp. 012008.
  • I. Avramov and M. Michailov, Specific heat of nanocrystals, J. Phys. Condens. Matter 20(29) (2008), pp. 295224.
  • J. Rupp and R. Birringer, Enhanced specific-heat-capacity (cp) measurements (150–300 k) of nanometer-sized crystalline materials, Phys. Rev. B Condens. Matter 36(15) (1987), pp. 7888.
  • G.P. Johari, Thermodynamic contributions from pre-melting or pre-transformation of finely dispersed crystals, Philos. Mag. A 77 (1998), pp. 1367–1380.
  • E. Grüneisen, Theorie des festen zustandes einatomiger elemente, Ann. Phys. 344(12) (2010), pp. 257–306.
  • E. Yakub, The modified Debye–Grüneisen model for highly compressed diamond, J. Low Temp. Phys. 187(1–2) (2017), pp. 20–32.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.