67
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Pressure dependent structural, dynamical, mechanical and electronic properties of magnesium dicarbide

, , , &
Pages 369-390 | Received 15 Aug 2022, Accepted 21 Nov 2022, Published online: 07 Dec 2022

References

  • Y.L. Li, W. Luo, Z. Zeng, H.Q. Lin, H.K. Mao, and R. Ahuja, Pressure-induced superconductivity in CaC2, Proc. Natl. Acad. Sci. U.S.A. 110 (2013), pp. 9289–9294.
  • W. Fan, Y.L. Li, J.L. Wang, Z.L. Zou, and Z. Zeng, Tc map and superconductivity of simple metals at high pressure, Physica C 470 (2010), pp. 696–702.
  • D. Zhou, Q. Li, Y.M. Ma, Q.L. Cui, and C.F. Chen, Pressure-induced superconductivity in SnTe: a first-principles study, J. Phys. Chem. 117 (2013), pp. 12266–12271.
  • H.Y. Gou, L. Hou, J.W. Zhang, and F.M. Gao, Pressure-induced incompressibility of ReC and effect of metallic bonding on its hardness, Appl. Phys. Lett. 92 (2008), pp. 241901(1–3).
  • X.F. Li and F. Peng, Predicted superhard phases of Zr-B compounds under pressure, Phys. Chem. Chem. Phys. 21 (2019), pp. 15609–15614.
  • D.S. Wang, Y. Yan, D. Zhou, and Y.H. Liu, Evolution of crystal and electronic structures of magnesium dicarbide at high pressure, Sci. Rep. 5 (2016), pp. 17815(1–8).
  • B. Xiao, J. Feng, J. Chen, and L. Yu, Crystal structures and electronic properties of MC2 (M = Mg;Ca;Sr;Ba) by comparative studies based on ab-initio calculations, Chem. Phys. Lett. 448 (2007), pp. 35–40.
  • P. Srepusharawoot, A. Blomqvist, C.M. Araújo, R.H. Scheicher, and R. Ahuja, One-dimensional polymeric carbon structure based on five-membered rings in alkaline earth metal dicarbides BeC2 and MgC2, Phys. Rev. B 82 (2010), pp. 125439(1–6).
  • U. Ruschewitz, Binary and ternary carbides of alkali and alkaline-earth metals, Coord. Chem. Rev. 244 (2003), pp. 115–136.
  • P. Karen, A. Kjekshus, Q. Huang, and V.L. Karen, The crystal structure of magnesium dicarbide, J. Alloys Compd. 282 (1999), pp. 72–75.
  • M. Atoji and R.C. Medrud, Structures of calcium dicarbide and uranium dicarbide by neutron diffraction, J. Chem. Phys. 31 (1959), pp. 332–337.
  • E. Ruiz and P. Alemany, Electronic structure and bonding in CaC2, J. Phys. Chem. 99 (1995), pp. 3114–3119.
  • O. Reckeweg, A. Baumann, H.A. Meyer, J. Glaser, and H.J. Meyer, Über die Koexistenz von tetragonalem und monoklinem CaC2: Strukturelle und spektroskopische Untersuchungen an Erdalkalimetallacetyliden, MC2 (M = Ca, Sr, Ba), Z. Anorg. Allg. Chem. 625 (1999), pp. 1686–1692.
  • V. Vohn, W. Kockelmannand, and U. Ruschewitz, On the synthesis and crystal structure of BaC2, J. Alloys Compd. 284 (1999), pp. 132–137.
  • J. Nylén, S. Konar, P. Lazor, D. Benson, and U. Häussermann, Structural behavior of the acetylide carbides Li2C2 and CaC2 at high pressure, J. Chem. Phys. 137 (2012), pp. 224507(1–8).
  • V. Babizhetskyy, O. Jepsen, R.K. Kremer, A. Simon, B. Ouladdiaf, and A. Stolovits, Structure and bonding of superconducting LaC2, J. Phys.: Condens. Matter. 26 (2014), pp. 025701–025711.
  • H.M. Tütüncü and G.P. Srivastava, A comparative ab initio study of superconductivity in the body centered tetragonal YC2 and LaC2, J. Appl. Phys. 117 (2015), pp. 153902–1539010.
  • J. Novák, Zur Kenntnis der Magnesiumcarbide, Z. Phys. Chem. 73 (1910), p. 513.
  • F. Irmann, ZurKenntnisder Magnesiumcarbide, Helv. Chim. Acta 31 (1948), pp. 1584–1602.
  • A. Saengdeejing, Y. Wang, and Z.K. Liu, Structural and thermodynamic properties of compounds in the Mg-B-C system from first-principles calculations, Intermetallics 18 (2010), pp. 803–808.
  • H.Y. Liu, G.Y. Gao, Y.W. Li, J. Hao, and J.S. Tse, Crystal structures and chemical bonding of magnesium carbide at high pressure, J. Phys. Chem. C 119 (2015), pp. 23168–23174.
  • S. Kim, K. Kim, J. Koo, H. Lee, B. Il Min, and D.Y. Kim, Pressure-induced phase transitions and superconductivity in magnesium carbides, Sci. Rep. 9 (2019), p. 20253(1–9).
  • X. Gonze, B. Amadon, P.M. Anglade, J.M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch, L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zerah, and J.W. Zwanziger, ABINIT: first-principles approach to material and nanosystem properties, Comput. Phys. Commun. 180 (2009), pp. 2582–2615.
  • D.R. Hamann, M. Schlüter, and C. Chiang, Norm-conserving pseudopotentials, Phys. Rev. Lett. 43 (1979), pp. 1494–1497.
  • G. Bachelet, D. Hamann, and M. Schlüter, Pseudopotentials that work: from H to Pu, Phys. Rev. B 26 (1982), pp. 4199–4228.
  • J.P. Perdew, K. Burke, and M. Ernzerhog, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • B. Hammer, L.B. Hansen, and J.K. Norskov, Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals, Phys. Rev. B 59 (1999), pp. 7413–7421.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.
  • W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes: The Art of Scientific Computing (FORTRAN Version), Cambridge University Press, New York, 1989.
  • R. Gaillac, P. Pullumbi, and F.X. Coudert, ELATE: an open-source online application for analysis and visualization of elastic tensors, J. Phys.: Condens. Matter 28 (2016), pp. 275201(1–5).
  • F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71 (1947), pp. 809–824.
  • C. Wolverton and V. Ozolinš, First-principles aluminum database: energetics of binary Al alloys and compounds, Phys. Rev. B 73 (2006), pp. 144104(1–14).
  • T.H.K. Barron and M.L. Klein, Second-order elastic constants of a solid under stress, Proc. Phys. Soc. 85 (1965), pp. 523–532.
  • A.R. Oganov, M.J. Gillan, and G.D. Price, Phys. Rev. B 71 (2005), pp. 064104(1–2).
  • Z.J. Wu, E.J. Zhao, H.P. Xiang, X.F. Hao, X.J. Liu, and J. Meng, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B 76 (2007), pp. 054115(1–15).
  • J.P. Watt and L. Peselnick, Clarification of the Hashin–Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal, trigonal, and tetragonal symmetries, J. Appl. Phys. 51 (1980), pp. 1525–1531.
  • J.P. Watt, Hashin–Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry, J. Appl. Phys. 50 (1980), pp. 6290–6295.
  • J.P. Watt, Hashin–Shtrikman bounds on the effective elastic moduli of polycrystals with monoclinic symmetry, J. Appl. Phys. 51 (1980), pp. 1520–1524.
  • W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper, Ann. Phys. 38 (1889), pp. 573–587.
  • A. Reuss, Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals, Z. Angew. Math. Mech. 9 (1929), pp. 49–58.
  • X.Q. Chen, H.Y. Niu, D.Z. Li, and Y.Y. Li, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics 19 (2011), pp. 1275–1281.
  • V.L. Solozhenko and E. Gregoryanz, Synthesis of superhard materials, Mater. Today 8 (2005), pp. 44–51.
  • N.V. Novikov and S.N. Dub, Fracture toughness of diamond single crystals, J. Hard Mater 2 (1991), pp. 3–11.
  • O.L. Anderson and H.H. Demarest, Elastic constants of the central force model for cubic structures: polycrystalline aggregates and instabilities, J. Geophys. Res. 76 (1971), pp. 1349–1369.
  • I.N. Frantsevich, F.F. Voronov, and S.A. Bokuta, Handbook on Elastic Constants and Moduli of Elasticity for Metals and Nonmetals, Naukova Dumka, Kiev, 1983, pp. 60–180.
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Philos. Mag. 45 (1954), pp. 823–843.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.