82
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Theoretical study of the non-parabolicity and size effects on the diamagnetic susceptibility of donor impurity in Si, HgS and GaAs cylindrical quantum dot and quantum disk: applied magnetic field influence is considered

ORCID Icon, , ORCID Icon, , &
Pages 492-505 | Received 11 Aug 2022, Accepted 08 Dec 2022, Published online: 23 Dec 2022

References

  • C. Ran, J. Xu, W. Gao, C. Huang, and S. Dou, Defects in metal triiodide perovskite materials towards high-performance solar cells: Origin, impact, characterization, and engineering. Chem. Soc. Rev. 47(12) (Jun. 2018), pp. 4581–4610. doi:10.1039/C7CS00868F.
  • B. Sopori, C. Li, S. Narayanan, and D. Carlson, Efficiency limitations of multicrystalline silicon solar cells due to defect clusters. MRS Online Proc. Libr. 864(1) (Oct. 2005), p. 62–864. doi:10.1557/PROC-864-E6.2.
  • J. Ye, M.M. Byranvand, C.O. Martínez, R.L.Z. Hoye, M. Saliba, and L. Polavarapu, Defect passivation in lead-halide perovskite nanocrystals and thin films: Toward efficient LEDs and solar cells. Angew. Chem. Int. Ed. 60(40) (2021), pp. 21636–21660. doi:10.1002/anie.202102360.
  • A. Saeki, M. Tsuji, and S. Seki, Direct evaluation of intrinsic optoelectronic performance of organic photovoltaic cells with minimizing impurity and degradation effects. Adv. Energy Mater. 1(4) (2011), pp. 661–669. doi:10.1002/aenm.201100143.
  • W. Szuszkiewicz, E. Dynowska, P. Dłużewski, W. Paszkowicz, A. Szczepańska, and B. Witkowska, Growth and structural characterization of zinc blende HgS. Phys. Status Solidi B 229(1) (2002), pp. 73–77. doi:10.1002/1521-3951(200201)229:1<73::AID-PSSB73>3.0.CO;2-6.
  • H. Kangarlou and S. Asgary, Investigation of structural and optical properties of deposited mercury sulphide thin layers as a function of growth time. Philos. Mag. 102(0) (May 2022), pp. 1–16. doi:10.1080/14786435.2022.2080294.
  • C.-H. Hsu, J.-R. Wu, Y.-T. Lu, D.J. Flood, A.R. Barron, and L.-C. Chen, Fabrication and characteristics of black silicon for solar cell applications: An overview. Mater. Sci. Semicond. Process. 25 (Sep. 2014), pp. 2–17. doi:10.1016/j.mssp.2014.02.005.
  • N.D. Shcherban, Review on synthesis, structure, physical and chemical properties and functional characteristics of porous silicon carbide. J. Ind. Eng. Chem. 50 (Jun. 2017), pp. 15–28. doi:10.1016/j.jiec.2017.02.002.
  • H. Ehrenreich, Band structure and transport properties of some 3–5 compounds. J. Appl. Phys. 32(10) (Oct. 1961), pp. 2155–2166. doi:10.1063/1.1777035.
  • H. Ehrenreich, Band structure and electron transport of GaAs. Phys. Rev. 120(6) (Dec. 1960), pp. 1951–1963. doi:10.1103/PhysRev.120.1951.
  • H.E. Ghazi, A. Jorio, and I. Zorkani, Impurity binding energy of lowest-excited state in (In,Ga)N–GaN spherical QD under electric field effect. Phys. B Condens. Matter 426 (Oct. 2013), pp. 155–157. doi:10.1016/j.physb.2013.06.004.
  • R. Khordad, Diamagnetic susceptibility of hydrogenic donor impurity in a V-grooveGaAs/Ga1-xAlxAs quantum wire. Eur. Phys. J. B 78(3) (Dec. 2010), pp. 399–403. doi:10.1140/epjb/e2010-10290-x.
  • P. Nithiananthi and K. Jayakumar, Diamagnetic susceptibility of hydrogenic donor impurity in low-dimensional semiconducting systems. Solid State Commun. 137(8) (Feb. 2006), pp. 427–430. doi:10.1016/j.ssc.2005.12.025.
  • W. Xie, Photoionization and third-order susceptibility of a neutral donor in ZnS/InP/ZnSe core/shell spherical quantum dots. Phys. B Condens. Matter. 449 (Sep. 2014), pp. 57–60. doi:10.1016/j.physb.2014.04.075.
  • R. Khordad and N. Fathizadeh, Simultaneous effects of temperature and pressure on diamagnetic susceptibility of a shallow donor in a quantum antidot. Phys. B Condens. Matter. 407(8) (Apr. 2012), pp. 1301–1305. doi:10.1016/j.physb.2012.01.133.
  • M. Solaimani, Binding energy and diamagnetic susceptibility of donor impurities in quantum dots with different geometries and potentials. Mater. Sci. Eng. B 262 (Dec. 2020), p. 114694–114694. doi:10.1016/j.mseb.2020.114694.
  • R. En-nadir, H. El Ghazi, A. Jorio, and I. Zorkani, Ground-state shallow-donor binding energy in (In,Ga)N/GaN double QWs under temperature, size, and the impurity position effects. J. Model. Simul. Mater. 4 (Mar. 2021), pp. 1–6. doi:10.21467/jmsm.4.1.1-6.
  • F. Dujardin, A. Oukerroum, E. Feddi, J. Bosch Bailach, J. Martínez-Pastor, and M. Zazi, Effect of a lateral electric field on an off-center single dopant confined in a thin quantum disk. J. Appl. Phys. 111(3) (2012), pp. 034317–034317.
  • F. Dujardin, E. Feddi, A. Oukerroum, J. Bosch Bailach, J. Martínez-Pastor, and E. Assaid, Lateral induced dipole moment and polarizability of excitons in a ZnO single quantum disk. J. Appl. Phys. 113(6) (2013), pp. 064314–064314.
  • R. Charrour, M. Bouhassoune, M. Barnoussi, and M. Fliyou, Charge carrier–phonon coupling in cylindrical quantum dots. Phys. Status Solidi B 219(2) (2000), pp. 287–297.
  • H.R. Rastegar Sedehi, R. Khordad, and H. Bahramiyan, Optical properties and diamagnetic susceptibility of a hexagonal quantum dot: Impurity effect. Opt. Quantum Electron. 53(5) (May 2021), pp. 264–264. doi:10.1007/s11082-021-02927-7.
  • A. Mmadi, K. Rahmani, I. Zorkani, and A. Jorio, Diamagnetic susceptibility of a magneto-donor in inhomogeneous quantum dots. Superlattices Microstruct. 57 (May 2013), pp. 27–36. doi:10.1016/j.spmi.2013.01.006.
  • P. Nithiananthi and K. Jayakumar, Pressure study on the semiconductor–metal transition in a quantum well. Phys. Status Solidi B 246(6) (2009), pp. 1238–1242. doi:10.1002/pssb.200945023.
  • S. Kumar and A.J. Peter, Diamagnetic susceptibility of two donors in a parabolic GaAs/GaAlAs quantum dot. J. Nanoelectron. Optoelectron. 7 (Aug. 2012), pp. 376–380. doi:10.1166/jno.2012.1324.
  • A. Sali, J. Kharbach, A. Rezzouk, and M. Ouazzani Jamil, The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot. Superlattices Microstruct. 104 (Apr. 2017), pp. 93–103. doi:10.1016/j.spmi.2017.02.014.
  • R. En-nadir, H. El Ghazi, W. Belaid, H. Abboudi, F.a. Jabouti, A. Jorio, and I. Zorkani, The confinement profile effect on the optical properties in different inverse-shaped single InGaN/GaN quantum wells. Iraqi J. Sci. 20 (Mar. 2022), pp. 1–13. doi:10.30723/ijp.v20i1.965.
  • Effect of conduction band non-parabolicity on the donor states in GaAs–(Al,Ga)As spherical quantum dots - ScienceDirect. Available at https://www.sciencedirect.com/science/article/abs/pii/S1386947706000555 (accessed Jul. 01, 2022).
  • K. El-Bakkari, A. Sali, E. Iqraoun, and A. Ezzarfi, Polaron and conduction band non-parabolicity effects on the binding energy, diamagnetic susceptibility and polarizability of an impurity in quantum rings. Superlattices Microstruct. 148 (Dec. 2020), p. 106729. doi:10.1016/j.spmi.2020.106729.
  • G. Rezaei and N.A. Doostimotlagh, External electric field, hydrostatic pressure and conduction band non-parabolicity effects on the binding energy and the diamagnetic susceptibility of a hydrogenic impurity quantum dot. Phys. E Low-Dimens. Syst. Nanostructures 44(4) (Jan. 2012), pp. 833–838. doi:10.1016/j.physe.2011.12.011.
  • S. Janati Edrissi, S. M’Zerd, I. Zorkani, K. Rahmani, Y. Chrafih, and A. Jorio, Pressure effect on the diamagnetic susceptibility of donor in HgS and GaAs cylindrical quantum dot. J. Nanophotonics 13 (Apr. 2019), p. 026015. doi:10.1117/1.JNP.13.026015.
  • A. Zounoubi, I. Zorkani, K. El Messaoudi, and A. Jorio, Magnetic field effect on the polarizability of shallow donor in cylindrical quantum dot. Phys. Lett. A 312(3–4) (Jun. 2003), pp. 220–227. doi:10.1016/S0375-9601(03)00640-6.
  • null Jayakumar, null Balasubramanian, and null Tomak, Effect of nonparabolicity on the binding energy of a hydrogenic donor in a quantum well with a magnetic field. Phys. Rev. B Condens. Matter 33(6) (Mar. 1986), pp. 4002–4004. doi:10.1103/physrevb.33.4002.
  • Ľ Hrivnák, Simple calculations of energy levels in quantum wells of lattice-matched semiconductors with nonparabolic bands. J. Appl. Phys. 71(9) (May 1992), pp. 4370–4376. doi:10.1063/1.350773.
  • P. Nithiananthi and K. Jayakumar, Diamagnetic susceptibility of a hydrogenic donor in low lying excited states in a quantum well. Superlattices Microstruct. 40(3) (Sep. 2006), pp. 174–179. doi:10.1016/j.spmi.2006.07.013.
  • R. Jeice and K.S. Wilson, Confined energy of two electrons in a spherical quantum dot with interaction effects. Indian J. Phys. 88 (Oct. 2014), pp. 1031–1036. doi:10.1007/s12648-014-0543-1.
  • P. Csavinszky and A.M. Elabsy, Effect of the nonparabolicity of the GaAs conduction band on the binding energy of off-center hydrogenic donors in a Ga1 – x Alx As/GaAs/Ga1 – x AlxAs quantum well. Int. J. Quantum Chem. 34(S22) (1988), pp. 25–31. doi:10.1002/qua.560340807.
  • Kittel’s Introduction to Solid State Physics, 8th Edition, Global Edition | Wiley. Wiley.com. Available at https://www.wiley.com/en-gb/Kittel%27s+Introduction+to+Solid+State+Physics%2C+8th+Edition%2C+Global+Edition-p-9781119454168 (accessed Jun. 30, 2022).
  • S. M’zerd, S. Janati. Edrissi, Y. Chrafih, K. Rahmani, M. Khenfouch, I. Zorkani, and A. Jorio, Shape effects on the diamagnetic susceptibility in inhomogeneous quantum dots. J. Phys. Conf. Ser. 1292(1) (Aug. 2019), p. 012003. doi:10.1088/1742-6596/1292/1/012003.
  • F. Oketch, H. Oyoko, and G. Amolo, A study of the effect of Hermanson’s spatial dielectric function on the photoionization cross-section of a hydrogenic and a non-hydrogenic donor impurity in a GaAs quantum dot of cylindrical geometry in the region of finite and infinite barrier potentials. J. Korean Phys. Sot 73 (Oct. 2018), pp. 928–933. doi:10.3938/jkps.73.928.
  • K. Rahmani, Y. Chrafih, S. M’Zred, S. Janati, I. Zorkani, A. Jorio, and A. Mmadi, Polarizability and binding energy of a shallow donor in spherical quantum dot-quantum well (QD-QW). J. Phys. Conf. Ser. 984 (Mar. 2018), p. 012001. doi:10.1088/1742-6596/984/1/012001.
  • E. Kilicarslan, S. Şakiroglu, E. Kasapoglu, H. Sari, and I. Sökmen, The effect of nitrogen on the diamagnetic susceptibility of a donor in GaxIn1−xNyAs1−y/GaAs quantum well under the magnetic field. Superlattices Microstruct. 48(3) (Sep. 2010), pp. 305–311. doi:10.1016/j.spmi.2010.06.017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.