87
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

The effect of in-doping on the quantum information entropy of hydrogenic impurity states in the InxGa1-xN semiconductor quantum dot

, , , , &
Pages 892-913 | Received 24 Oct 2022, Accepted 23 Jan 2023, Published online: 10 Feb 2023

References

  • J.P. Connerade, V.H. Dolmatov, and P.A. Lakshmi, The filling of shells in compressed atoms. J. Phys. B. 32 (2000), pp. 251–258.
  • A.L. Buchachenko, Compressed atoms. J. Phys. Chem. 105 (2001), pp. 5839–5846.
  • H. Lv, M.G. Yao, Q.J. Li, R. Liu, B. Liu, Z. Yao, D.D. Liu, Z.D. Liu, J. Liu, Z.Q. Chen, B. Zou, T. Cui, and B.B. Liu, Insertion of N2 into the channels of AFI zeolite under high pressure. Sci. Rep. 5 (2015), pp. 1–7.
  • K.D. Sen, J. Garza, R. Vargas, and A. Vela, Effective pressure induced electronic transition in spherically confined alkali metal atoms. Proc. Indian Nat. Sci. Acad. 70 (2004), pp. 675–681.
  • D. Guerra, R. Vargas, P. Fuentealba, and J. Garza, Modeling pressure effects on the electronic properties of Ca, Sr, and Ba by the confined atoms model. Adv. Quantum Chem. 58 (2009), pp. 1–12.
  • M. Rodriguez-Bautista, C. Díaz-García, A.M. Navarrete-López, R. Vargas, and J. Garza, Roothaan’s approach to solve the Hartree-Fock equations for atoms confined by soft walls: basis set with correct asymptotic behavior. J. Chem. Phys. 143 (2015), pp. 034103.
  • K.D. Sen, Electronic Structure of Quantum Confined Atoms and Molecules, Springer International Publishing, Cham, Switzerland, 2014.
  • V.K. Dolmatov, Photoionization of atoms encaged in spherical fullerenes. Adv. Quantum Chem. 58 (2009), pp. 13–68.
  • A. Sarsa and C. Le Sech, Variational Monte Carlo method with dirichlet boundary conditions: application to the study of confined systems by impenetrable surfaces with different symmetries. J. Chem. Theory Comput. 7 (2011), pp. 2786–2794.
  • C. Le Sech and A. Banerjee, A variational approach to the Dirichlet boundary condition: application to confined H−, He and Li. J. Phys. B 44 (2011), pp. 105003.
  • H. Pang, W.-S. Dai, and M. Xie, The pressure exerted by a confined ideal gas. J. Phys. A 44 (2011), pp. 365001.
  • J. Katriel and H.E. Montgomery Jr, The virial theorem for the smoothly and sharply, penetrably and impenetrably confined hydrogen atom. J. Chem. Phys. 137 (2012), pp. 114109.
  • R. Cabrera-Trujillo, and S.A. Cruz, Confinement approach to pressure effects on the dipole and the generalized oscillator strength of atomic hydrogen. Phys. Rev. A 87 (2013), pp. 012502.
  • A.M. Ishkhanyan and V.P. Krainov, WKB-approach for the 1D hydrogen atom. Results Phys. 12 (2019), pp. 1490–1491.
  • D.S. Chuu, C.M. Hsiao, and W.N. Mei, Hydrogenic impurity states in quantum dots and quantum wires. Phys. Rev. B 46 (1992), pp. 3898–3905.
  • T.L. Cottrell, Molecular energy at high pressure. Trans. Faraday Soc. 47 (1951), pp. 337–342.
  • G.M. Longo, S. Longo, and D. Giordano, Confined H (1s) and H (2p) under different geometries. Phys. Scr. 90 (2015), pp. 085402.
  • J.L. Zhu, J.J. Xiong, and B.L. Gu, Confined electron and hydrogenic donor states in a spherical quantum dot of GaAs-Ga 1− x Al x As. Phys. Rev. B 41 (1990), pp. 6001–6008.
  • N. Mukherjee and A.K. Roy, Quantum confinement in an asymmetric double-well potential through energy analysis and information entropic measure. Ann. Phys. 528 (2016), pp. 412–433.
  • A. Ghosal, N. Mukherjee, and A.K. Roy, Information entropic measures of a quantum harmonic oscillator in symmetric and asymmetric confinement within an impenetrable box. Ann. Phys. 528 (2016), pp. 796–818.
  • C.E. Shannon, Claude Elwood Shannon. Bell Syst. Tech. J 27 (1948), pp. 379–423.
  • I. Bialynicki-Birula and J. Mycielski, Uncertainty relations for information entropy in wave mechanics. Comm. Math. Phys. 44 (1975), pp. 129–132.
  • M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, 2005.
  • M. Hô, D.F. Weaver, V.H. Smith Jr, R.P. Sagar, and R.O. Esquivel, Calculating the logarithmic mean excitation energy from the Shannon information entropy of the electronic charge density. Phys. Rev. A57 (1998), pp. 4512–4518.
  • P. Karafiloglou and C.P. Panos, Order of Coulomb and Fermi pairs: application in a π-system. Chem. Phys. Lett. 389 (2004), pp. 400–404.
  • N.L. Guevara, R.P. Sagar, and R.O. Esquivel, Information uncertainty-type inequalities in atomic systems. J. Chem. Phys. 119 (2003), pp. 7030–7036.
  • P. Fuentealba and J. Melin, Atomic spin-density polarization index and atomic spin-density information entropy distance. Int. J. Quantum Chem. 90 (2002), pp. 334–341.
  • R.J. Yáñez, W. Van Assche, and J.S. Dehesat, Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 50 (1994), pp. 3065–3079.
  • K.D. Sen, Characteristic features of Shannon information entropy of confined atoms. J. Chem. Phys. 123 (2005), pp. 074110.
  • N. Aquino, A. Flores-Riveros, and J.F. Rivas-Silva, Shannon and Fisher entropies for a hydrogen atom under soft spherical confinement. Phys. Lett. A 377 (2013), pp. 2062–2068.
  • N. Mukherjee, A. Roy, and A.K. Roy, Information entropy as a measure of tunneling and quantum confinement in a symmetric double-well potential. Ann. Phys. (Berlin) 527 (2015), pp. 825–845.
  • X.D. Song, G.H. Sun, and S.H. Dong, Shannon information entropy for an infinite circular well. Phys. Lett. A 379 (2015), pp. 1402–1408.
  • N. Mukherjee and A.K. Roy, Information-entropic measures in free and confined hydrogen atom. Int. J. Quantum Chem. 118 (2018), pp. e25596.
  • W.S. Nascimento and F.V. Prudente, Shannon entropy: A study of confined hydrogenic-like atoms. Chem. Phys. Lett. 691 (2018), pp. 401–407.
  • M.M. Sánchez, R. Vargas, and J. Garza, Shannon entropy for the hydrogen atom confined by four different potentials. Quantum Rep. 1 (2019), pp. 208–218.
  • S.J.C. Salazar, H.G. Laguna, V. Prasad, and R.P. Sagar, Shannon-information entropy sum in the confined hydrogenic atom. Int. J. Quantum Chem. 120 (2020), pp. e26188.
  • S.J.C. Salazar, H.G. Laguna, B. Dahiya, V. Prasad, and R.P. Sagar, Shannon information entropy sum of the confined hydrogenic atom under the influence of an electric field. Eur. Phys. J. D 75 (2021), pp. 1–13.
  • S. Dabas and R. Joshi, A numerical evaluation of Shannon entropy for modified Hulthen potential. Eur. Phys. J. D 76 (2022), pp. 1–7.
  • I. Segmene, Y. Sayad, N. Selatni, and A. Nouiri, Design guidelines of InGaN nanowire arrays for photovoltaic applications. Int. J. Nano. Dimens 12 (2021), pp. 393–401.
  • S. N. Zhang, J.L. Zhang, J.D. Gao, X.L. Wang, C.D. Zheng, M. Zhang, X.M. Wu, L.Q. Xu, J. Ding, Z.J. Quan, and F.Y. Jiang, Efficient emission of InGaN-based light-emitting diodes: toward orange and red. Photonics Res. 8 (2020), pp. 1671–1675.
  • S.A. Kazazis, E. Papadomanolaki, M. Androulidaki, M. Kayambaki, and E. Iliopoulos, Optical properties of InGaN thin films in the entire composition range. J. Appl. Phys. 123 (2018), pp. 125101.
  • B. Kucukgok, X.W. Wu, X.J. Wang, Z.Q. Liu, I.T. Ferguson, and N. Lu, The structural properties of InGaN alloys and the interdependence on the thermoelectric behavior. AIP. Adv. 6 (2016), pp. 025305.
  • A. Rashidi, M. Monavarian, A. Aragon, and D. Feezell, Thermal and efficiency droop in InGaN/GaN light-emitting diodes: decoupling multiphysics effects using temperature-dependent RF measurements. Sci. Rep. 9 (2019), pp. 1–10.
  • A. David, N.G. Young, C. Lund, and M.D. Craven, Thermal droop in high-quality InGaN LEDs. Appl. Phys. Lett. 115 (2019), pp. 223502.
  • C. Chang and X. Li, Nonlinear optical properties in GaAs/Al0. 3Ga0. 7As quantum dots of inversely quadratic Hellmann plus Kratzer potential. Eur. Phys. J. D 76 (2022), pp. 1–8.
  • I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, Band parameters for III–V compound semiconductors and their alloys. J. Appl. Phys. 89 (2001), pp. 5815–5875.
  • D.H. Wang, J. Zhang, Z.P. Sun, S.F. Zhang, and G. Zhao, Quantum mechanical effects for a hydrogen atom confined in a dielectric spherical microcavity. Chem. Phys. 551 (2021), pp. 111331.
  • M.G. Cheont, E.-K. Suh, and H.J. Lee, High-quality In0. 3Ga0. 7N/GaN quantum well growth and their optical and structural properties. Semicond. Sci. Technol. 16 (2001), pp. 783–788.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.