119
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A fully discrete Peierls model for the 12〈111〉 screw dislocation in Ta

Pages 815-839 | Received 05 Sep 2022, Accepted 09 Jan 2023, Published online: 14 Feb 2023

References

  • V. Vitek, Theory of the core structures of dislocations in body-centred-cubic metals, Cryst. Lattice Defects 5 (1974), pp. 1–34.
  • J.W. Christian, Some surprising features of the plastic deformation of body-centered cubic metals and alloys, Metall. Trans. A 14(7) (1983), pp. 1237–1256.
  • M.S. Duesbery and G.Y. Richardson, The dislocation core in crystalline materials, Crit. Rev. Solid State Mater. Sci. 17(1) (1991), pp. 1–46.
  • M.S. Duesbery and V. Vitek, Plastic anisotropy in BCC transition metals, Acta Mater. 46(5) (1998), pp. 1481–1492.
  • V. Vitek and V. Paidar, Non-planar dislocation cores: A ubiquitous phenomenon affecting mechanical properties of crystalline materials, in A Tribute to F.R.N. Nabarro, volume 14 of Dislocations in Solids, J. P. Hirth, ed., Elsevier, 2008, pp. 439–514.
  • L. Dezerald, L. Proville, L. Ventelon, F. Willaime, and D. Rodney, First-principles prediction of Kink-pair activation enthalpy on screw dislocations in BCC transition metals: V, Nb, Ta, Mo, W, and Fe, Phys. Rev. B 91 (2015), Article ID 094105.
  • P.B. Hirsch, A. Howie, and M.J. Whelan, A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects, Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 252(1017) (1960), pp. 499–529.
  • S. Takeuchi, Core structure of a screw dislocation in the BCC lattice and its relation to slip behaviour of α-iron, Philos. Mag. A 39(5) (1979), pp. 661–671.
  • S. Ismail-Beigi and T.A. Arias, Ab initio study of screw dislocations in Mo and Ta: A new picture of plasticity in BCC transition metals, Phys. Rev. Lett. 84 (2000), pp. 1499–1502.
  • L.H. Yang, P. Söderlind, and J.A. Moriarty, Accurate atomistic simulation of (a/2) 〈111〉 screw dislocations and other defects in BCC tantalum, Philos. Mag. A 81(5) (2001), pp. 1355–1385.
  • C. Woodward and S.I. Rao, Flexible ab initio boundary conditions: Simulating isolated dislocations in BCC Mo and Ta, Phys. Rev. Lett. 88(21) (2002), Article ID 216402.
  • V. Vitek, Core structure of screw dislocations in body-centred cubic metals: Relation to symmetry and interatomic bonding, Philos. Mag. 84(3–5) (2004), pp. 415–428.
  • C. Domain and G. Monnet, Simulation of screw dislocation motion in iron by molecular dynamics simulations, Phys. Rev. Lett. 95 (2005), Article ID 215506.
  • S.L. Frederiksen and K.W. Jacobsen, Density functional theory studies of screw dislocation core structures in BCC metals, Philos. Mag. 83(3) (2010), pp. 365–375.
  • R. Gröger and V. Vitek, Directional versus central-force bonding in studies of the structure and glide of 1/2〈111〉 screw dislocations in BCC transition metals, Philos. Mag. 89(34–36) (2009), pp. 3163–3178.
  • E. Clouet, L. Ventelon, and F. Willaime, Dislocation core energies and core fields from first principles, Phys. Rev. Lett. 102 (2009), Article ID 055502.
  • D.C. Chrzan, M.P. Sherburne, Y. Hanlumyuang, T. Li, and J.W. Morris, Spreading of dislocation cores in elastically anisotropic body-centered-cubic materials: The case of gum metal, Phys. Rev. B. 82(18) (2010), pp. 184202.
  • E. Clouet, L. Ventelon, and F. Willaime, Dislocation core field. II. Screw dislocation in iron, Phys. Rev. B 84(22) (2011), pp. 224107.
  • L. Ventelon and F. Willaime, Generalized stacking-faults and screw-dislocation core-structure in BCC iron: A comparison between ab initio calculations and empirical potentials, Philos. Mag. 90(7–8) (2010), pp. 1063–1074.
  • L. Ventelon, F. Willaime, E. Clouet, and D. Rodney, Ab initio investigation of the Peierls potential of screw dislocations in BCC Fe and W, Acta Mater. 61(11) (2013), pp. 3973–3985.
  • C.R. Weinberger, G.J. Tucker, and S.M. Foiles, Peierls potential of screw dislocations in BCC transition metals: Predictions from density functional theory, Phys. Rev. B 87(5) (2013), pp. 054114.
  • D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, and F. Willaime, Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater. 124 (2017), pp. 633–659.
  • K. Edagawa, T. Suzuki, and S. Takeuchi, Motion of a screw dislocation in a two-dimensional Peierls potential, Phys. Rev. B 55 (1997), pp. 6180–6187.
  • M. Itakura, H. Kaburaki, and M. Yamaguchi, First-principles study on the mobility of screw dislocations in BCC iron, Acta Mater. 60(9) (2012), pp. 3698–3710.
  • L. Dezerald, L. Ventelon, E. Clouet, C. Denoual, D. Rodney, and F. Willaime, Ab initio modeling of the two-dimensional energy landscape of screw dislocations in BCC transition metals, Phys. Rev. B89(2) (2014), Article ID 024104.
  • L. Dezerald, D. Rodney, E. Clouet, L. Ventelon, and F. Willaime, Plastic anisotropy and dislocation trajectory in BCC metals, Nat. Commun. 7(1) (2016), pp. 1–7.
  • R. Peierls, The size of a dislocation, Proc. Phys. Soc. 52(1) (1940), pp. 34–37.
  • F. Kroupa and L. Lejćek, Peierls–Nabarro model of nonplanar screw core, Czechoslov. J. Phys. B26(5) (1976), pp. 528–537.
  • A.H.W. Ngan, A generalized Peierls–Nabarro model for nonplanar screw dislocation cores, J. Mech. Phys. Solids 45(6) (1997), pp. 903–921.
  • S. Wang and X. Hu, Exact solution of the generalized Peierls equation for arbitrary n-fold screw dislocation, J. Mech. Phys. Solids 114 (2018), pp. 75–83.
  • X. Hu and S. Wang, Nonplanar core structure of the screw dislocations in tantalum from the improved Peierls–Nabarro theory, Philos. Mag. 98(6) (2017), pp. 484–516.
  • W. Shaofeng, Lattice theory for structure of dislocations in a two-dimensional triangular crystal, Phys. Rev. B 65(9) (2002), pp. 094111.
  • S. Wang, S. Zhang, J. Bai, and Y. Yin, Shape change and Peierls barrier of dislocation, J. Appl. Phys.118(24) (2015), pp. 34–80.
  • S. Wang, Intrinsic freedom of dislocation structures and Peierls stress oscillation, Phys. Rev. B 105 (2022), Article ID 094113.
  • S. Wang, L. Huang, and R. Wang, The 90∘ partial dislocation in semiconductor silicon: An investigation from the lattice P–N theory and the first principle calculation, Acta Mater. 109 (2016), pp. 187–201.
  • H. Xiang, R. Wang, and S. Wang, Core structure and thermal transformation of the screw dislocation in aluminum, J. Appl. Phys. 127(12) (2020), pp. 125106.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, John Wiley & Sons, New York, 1982.
  • X. Hu, M. Huang, and Z. Li, Nonplanar core structure of 1/2〈111〉 screw dislocations: An anisotropic Peierls–Nabarro model, Mech. Mater. 156 (2021), Article ID 103794.
  • Y.-P. Pellegrini, Dynamic Peierls–Nabarro equations for elastically isotropic crystals, Phys. Rev. B 81(2) (2010), pp. 024101.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.