75
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Phase stability and physical properties of lanthanum dicarbide under pressure

, , ORCID Icon, &
Pages 969-986 | Received 06 Aug 2022, Accepted 30 Jan 2023, Published online: 21 Feb 2023

References

  • T.S.R. Ch. Murthy, J.K. Sonber, K. Sairam, R.D. Bedse and J.K. Chakarvartty, Development of Refractory and Rare Earth Metal Borides & Carbides for High-Temperature Applications. Mater. Today: Proc 3 (2016), pp. 3104–3113.
  • R.W. Green, E.O. Thorland, J. Croat and S. Legvold, Superconductivity in Some Compounds of La, Lu, Sc, and Y. J. Appl. Phys 40 (1969), pp. 3161–3162.
  • C.P. Poole and H.A. Farach, Tabulations and Correlations of Transition Temperatures of Classical Superconductors. J. Supercond. Nov. Magn 13 (2000), pp. 47–60.
  • R.K. Kremer and A. Simon, Superconductivity and magnetoresistance in unusual layered rare-earth halides and rare earth carbides. Curr. Appl. Phys 4 (2004), pp. 563–569.
  • E.K. Storms, The Refractory Carbides, Academic, New York, 1967.
  • L.E. Von Toth, Transition Metal Carbides and Nitrides, Academic Press, New York, 1971.
  • M. Atoji, Neutron Diffraction Studies of CaC2, YC2, LaC2, CeC2, TbC2, YbC2, LuC2, and UC2. J. Chem. Phys. 35 (1961), pp. 1950–1960.
  • G.Y. Adachi, T. Nishihata and J. Shiokawa, Rare-earth mixed dicarbides. J. Less-Common Met. 32 (1973), pp. 301–306.
  • T. Sakai, G.Y. Adachi, T. Yoshida and J. Shiokawa, Magnetic and electrical properties of rare-earth dicarbides and their solid solutions. J. Less-Common Met 81 (1981), pp. 91–102.
  • D.W. Jones, I.J. McColm and J. Yerkess, Tetragonal and cubic crystal structures of some binary and ternary metal dicarbides in the series Ce-Er, Ce-Lu, U-La, and U-Ce. J. Solid State Chem 92 (1991), pp. 301–311.
  • V. Babizhetskyy, O. Jepsen, R.K. Kremer, A. Simon, B. Ouladdiaf and A. Stolovits, Structure and bonding of superconducting LaC2. J. Phys. Condens. Matter 26 (2014), pp. 025701.
  • H.M. Tütüncü and G.P. Srivastava, A comparative ab initio study of superconductivity in the body-centered tetragonal YC2 and LaC2. J. Appl. Phys 117 (2015), pp. 153902-1–153902-9.
  • K.P. Hilleche, T. Bi and E. Zurek, Materials under high pressure: a chemical perspective. Appl. Phys. A 128 (2022), pp. 441.
  • L. Zhang, Y. Wang, J. Lv and Y. Ma, Materials discovery at high pressures. Nature Rev. Mater 2 (2017), pp. 17005.
  • S. Ferahtia, S. Saib, N. Bouarissa and S. Benyettou, Structural parameters, elastic properties and piezoelectric constants of wurtzite ZnS and ZnSe under pressure. Superlatt. Microstruct 67 (2014), pp. 88–96.
  • S. Saib, N. Bouarissa, P. Rodríguez-Hernández and A. Muñoz, Ab initio lattice dynamics and piezoelectric properties of MgS and MgSe alkaline earth chalcogenides. Eur. Phys. J. B 73 (2010), pp. 185–193.
  • M. Xu, Y. Li and Y. Ma, Materials by design at high pressures. Chem. Sci 13 (2022), pp. 329–344.
  • N. Bouarissa, The behavior of electron valence and conduction charge densities in InP under pressure. Mater. Chem. Phys 65 (2000), pp. 107–112.
  • S.M. Sharma and N. Garg, Chapter 1-Material studies at high pressure. Mater. Under Extreme Conditions (2017), pp. 1–47.
  • S. Pei, Z. Wang and J. Xia, High pressure studies of 2D materials and heterostructures: A review. Mater. & Design 213 (2022), pp. 110363.
  • S. Saib and N. Bouarissa, High-pressure band parameters for GaAs: first principles calculations. Solid-State Electron. 50 (2006), pp. 763–768.
  • A. Mujica, A. Rubio, A. Muñoz and R.J. Needs, High-pressure phases of group-IV, III–V, and II-VI compounds. Rev. Mod. Phys 75 (2003), pp. 863–912.
  • P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas. Phys. Rev. 136 (1964), pp. B864.
  • W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Phy. Rev 140 (1965), pp. A1133–A1138.
  • X. Gonze, Adiabatic density-functional perturbation theory. Phys. Rev. A 52 (1995), pp. 1096–1114.
  • S. Baroni, S. Gironcoli, A.D. Corso and P. Giannozzi, Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys 73 (2001), pp. 515–562.
  • P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen and L.D. Marks, WIEN2k: An APW+lo program for calculating the properties of solids. J. Chem. Phys 152 (2020), pp. 074101-1–074101-30.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran and L.D. Marks. WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, (Karlheinz Schwarz, Techn. Universität Wien, Austria, 2018), ISBN 3-9501031-1-2.
  • P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. Fabris, G. Fratesi, S. de Gironcoli, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari and R.M. Wentzcovitch, QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21 (2009), pp. 395502-1–395502-19.
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Phys. Rev. Lett 77 (1996), pp. 3865–3868.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188–5192.
  • A.B. Migdal, Interaction between electrons and lattice vibrations in a normal metal. Sov. Phys. JETP 34 (1958), pp. 996–1001.
  • G.M. Eliashberg, Interactions between electrons and lattice vibrations in a superconductor. Sov. Phys. JETP 11 (1960), pp. 696–702.
  • T.H. Fischer and J. Almlof, General methods for geometry and wave function optimization. J. Phys. Chem 96 (1992), pp. 9768–9774.
  • F.D. Murnaghan, The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. U. S. A 30 (1944), pp. 244–247.
  • G.I. Csonka, J.P. Perdew, A. Ruzsinszky, P.H.T. Philipsen, S. Lebègue, J. Paier, O.A. Vydrov and J.G. Ángyán, Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 79 (2009), pp. 155107–1. -155107-14.
  • Y. Li, Y. Gao, B. Xiao, T. Min, Y. Yang, S. Ma and D. Yi, The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations. J. Alloys Compd 509 (2011), pp. 5242–5249.
  • Y. LePage and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress. Phys.Rev. B 65 (2002), pp. 104104-1–104104-14.
  • O. Beckstein, J. Klepeis, G. Hart and O. Pankratov, First-principles elastic constants and electronic structure of α−Pt2Si and PtSi. Phys. Rev. B 63 (2001), pp. 134112-1–134112-12.
  • W. Voigt. Lehrbuch Der Kristallphysik, Leipzig, Taubner, (1928).
  • A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech 9 (1929), pp. 49–58.
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 65 (1952), pp. 349–354.
  • D. Pettifor, Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol 8 (1992), pp. 345–349.
  • D.V. Suetin, I.R. Shein and A.L. Ivanovskii, Structural, elastic, electronic and magnetic properties of perovskite-like Co3WC, Rh3WC and Ir3WC from first-principles calculations. Solid State Sci. 12 (2010), pp. 814–817.
  • J. Wang, S. Yip, S.R. Phillpot and D. Wolf, Crystal instabilities at finite strain. Phys. Rev. Lett 71 (1993), pp. 4182–4185.
  • G. Grimvall, B. Magyari-Köpe, V. Ozolinš and K.A. Persson, Lattice instabilities in metallic elements. Rev. Mod. Phys 84 (2012), pp. 945–986.
  • D. Raabe, Computational Materials Science: The Simulation of Materials Microstructures and Properties, (Wiley-VCH. Weinheim (1998.
  • A.F. Guillermet, J. Häglund and G. Grimvall, Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure. Phys. Rev. B 45 (1992), pp. 11557–11567.
  • K. Karch and F. Bechstedt, Ab initio lattice dynamics of BN and AlN: Covalent versus ionic forces. Phys. Rev. B 56 (1997), pp. 7404–7415.
  • S. Dilmi, S. Saib and N. Bouarissa, Electron-Phonon Coupling and Superconductivity in YC2 Compound upon Compression. J. Supercond. Nov. Magn 34 (2020), pp. 1311–1320.
  • S. Saib, H.Y. Uzunok, E. Karaca, S. Bağcı, H.M. Tütüncü and G.P. Srivastava, First-principles calculations of physical properties and superconductivity of orthorhombic Mo2BC and Nb2BN. J. Appl. Phys 30 (2021), pp. 1539021–1539012.
  • W.L. McMillan, Transition temperature of strong-coupled superconductors. Phys. Rev 167 (1968), pp. 331–344.
  • P.B. Allen and R.C. Dynes, Superconductivity at very strong coupling. J. Phys. Chem.: Solid State 8 (1975), pp. L158–L163.
  • F. Marsiglio and J.P. Carbotte, Strong-coupling corrections to Bardeen-Cooper-Schrieffer ratios. Phys. Rev. B 33 (1986), pp. 6143–6152.
  • P.B. Allen and R.C. Dynes, Transition temperature of strong-coupled superconductors reanalyzed. Phys. Rev. B 12 (1975), pp. 905–922.
  • X. Wang, I. Loa, K. Syassen, R.K. Kremer, A. Simon, M. Hanfland and K. Ahn, Structural properties of the sesquicarbide superconductor La2C3 at high pressure. Phys. Rev. B 72 (2005), pp. 064520-1–064520-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.