147
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Theoretical study of void collapse and hot spot formation mechanism for energetic material

&
Pages 915-932 | Received 22 Jul 2022, Accepted 28 Jan 2023, Published online: 23 Feb 2023

References

  • Y. Long and J. Chen, A molecular dynamics study of the early-time mechanical heating in shock-loaded octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine-based explosives, J. Appl. Phys. 116 (2014), p. Article ID 033516.
  • N.K. Rai and H.S. Udaykumar, Void collapse generated meso-scale energy localization in shocked energetic materials: Non-dimensional parameters, regimes, and criticality of hotspots, Phys. Fluids 31 (2019), p. Article ID 016103.
  • R. Menikoff, Pore collapse and hot spots in HMX, AIP Conf. Proc. 706 (2004), pp. 393–396.
  • R.A. Austin, N.R. Barton, W.M. Howard, and L.E. Fried, Modeling pore collapse and chemical reactions in shock-loaded HMX crystals, J. Phys. Conf. Ser. 500 (2014), p. Article ID 052002.
  • R.A. Austin, N.R. Barton, J.E. Reaugh, and L.E. Fried, Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal, J. Appl. Phys. 117 (2015), p. Article ID 185902.
  • H.H. Cady, A.C. Larson, and D.T. Cromer, The crystal structure of α-HMX and a refinement of the structure of β-HMX, Acta Cryst. 16 (1963), pp. 617–623.
  • R.E. Cobbledick and R.W.H. Small, The crystal structure of the δ-form of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (δ-HMX), Acta Cryst. B 30 (1974), pp. 1918–1922.
  • P. Main, R.E. Cobbledick, and R.W.H. Small, Structure of the fourth form of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (γ-HMX), 2C 4H 8N 8O 8⋅0.5H 2O, Acta Cryst. C41 (1985), pp. 1351–1354.
  • T.R. Gibbs and A. Popolato (eds.), LASL Explosive Property Data, University of California Press, California, 1980.
  • V. Stepanov, T.M. Willey, J. Ilavsky, J. Gelb, and H. Qiu, Structural characterization of RDX-based explosive nanocomposites, Propellants Explos. Pyrotech. 38 (2013), pp. 386–393.
  • J.T. Mang, C.B. Skidmore, R.P. Hjelm, and P.M. Howe, Application of small-angle neutron scattering to the study of porosity in energetic materials, J. Mater. Res. 15 (2000), pp. 1199–1208.
  • R.M. Eason and T.D. Sewell, Molecular dynamics simulations of the collapse of a cylindrical pore in the energetic material α-RDX, J. Dynamic Behavior Mater. 1 (2015), pp. 423–438.
  • M.A. Wood, M.J. Cherukara, E.M. Kober, and A. Strachan, Ultra-fast chemistry under non-equilibrium conditions and the shock to deflagration transition at the nanoscale, J. Phys. Chem. C 119 (2015), pp. 22008–22015.
  • T. Zhou, J. Lou, Y. Zhang, H. Song, and F. Huang, Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: A large-scale reactive molecular dynamics study, Phys. Chem. Chem. Phys. 18 (2016), pp. 17627–17645.
  • C. Li, B.W. Hamilton, and A. Strachan, Hotspot formation due to shock-induced pore collapse in 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX): Role of pore shape and shock strength in collapse mechanism and temperature, J. Appl. Phys. 127 (2020), p. Article ID 175902.
  • R. Menikoff, Hot spot formation from shock reflections, Shock Waves 21 (2011), pp. 141–148.
  • N.K. Rai, M.J. Schmidt, and H.S. Udaykumar, High-resolution simulations of cylindrical void collapse in energetic materials: Effect of primary and secondary collapse on initiation thresholds, Phys. Rev. Fluids 2 (2017), p. Article ID 043202.
  • N.K. Rai, M.J. Schmidt, and H.S. Udaykumar, Collapse of elongated voids in porous energetic materials: Effects of void orientation and aspect ratio on initiation, Phys. Rev. Fluids 2 (2017), p. Article ID 043201.
  • D.M. Zhang and Z.C. Zhong, Introduction to Applied Group Theory, Huazhong University of Science & Technology Press, Wuhan, 2001.
  • G.D. Smith and R.K. Bharadwaj, Quantum chemistry based force field for simulations of HMX, J. Phys. Chem. B 103 (1999), pp. 3570–3575.
  • D. Bedrov, C. Arragari, G.D. Smith, T.D. Sewell, R. Menikoff, and J.M. Zaug, Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field, J. Comput. Aided Mol. Des. 8 (2001), pp. 77–85.
  • S.J. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995), pp. 1–19. Available at http://lammps.sandia.gov.
  • S. Nosé, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52 (1984), pp. 255–268.
  • W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions, Phys. Rev. A 31 (1985), pp. 1695–1697.
  • W.X. Li, One-Dimensional Nonsteady Flow and Shock Waves, National Defence Industry Press, Beijing, 2003.
  • Y. Long and J. Chen, Theoretical study of the defect evolution for molecular crystal under shock loading, J. Appl. Phys. 125 (2019), p. Article ID 065107.
  • F. Birth, Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K, J. Geophys. Res. 83 (1978), pp. 1257–1268.
  • A. Pereverzev and T. Sewell, Elastic coefficients of β-HMX as functions of pressure and temperature from molecular dynamics, Crystals 10 (2020), pp. 1123.
  • R. Menikoff, Detonation waves in PBX 9501, Combust. Theory Modelling 10 (2006), pp. 1003–1021.
  • Y. Long and J. Chen, An investigation of the hot spot formation mechanism for energetic material, J. Appl. Phys. 122 (2017), p. Article ID 175105.
  • D. Bedrov, G.D. Smith, and T.D. Sewell, Temperature-dependent shear viscosity coefficient of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX): A molecular dynamics simulation study, J. Chem. Phys. 112 (2000), pp. 7203–7208.
  • J.H. Wang, Two-Dimensional Nonsteady Flow and Shock Waves, Science Press, Beijing, 1994.
  • Y. Long and J. Chen, Theoretical study of the critical dynamic behaviors for pore collapse in explosive, Modelling Simul. Mater. Sci. Eng. 29 (2021), p. Article ID 055009.
  • Y. Long, Y.G. Liu, F.D. Nie, and J. Chen, A method to calculate the thermal conductivity of HMX under high pressure, Philos. Mag. 92 (2012), pp. 1023–1045.
  • C.A. Duarte, C. Li, B.W. Hamilton, A. Strachan, and M. Koslowski, Continuum and molecular dynamics simulations of pore collapse in shocked β-tetramethylene tetranitramine (β-HMX) single crystals, J. Appl. Phys. 129 (2021), p. Article ID 015904.
  • P. Das, P. Zhao, D. Perera, T. Sewell, and H.S. Udaykumar, Molecular dynamics-guided material model for the simulation of shock-induced pore collapse in β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX), J. Appl. Phys. 130 (2021), p. Article ID 085901.
  • S. Plimpton, P. Crozier, and A. Thompson, LAMMPS Users Manual, Sandia National Laboratories, Albuquerque, NM, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.