151
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of rolling routes on the microstructure, texture and mechanical properties of Mg-5Y binary alloy

, , &
Pages 840-859 | Received 30 Aug 2021, Accepted 05 Feb 2023, Published online: 02 Mar 2023

References

  • W.J. Joost and P.E. Krajewski, Towards magnesium alloys for high-volume automotive applications. Scr. Mater 128 (2017), pp. 107–112. doi:10.1016/j.scriptamat.2016.07.035.
  • T.M. Pollock, Weight loss with magnesium alloys. Science (80-.) 328 (2010), pp. 986–987. doi:10.1126/science.1182848.
  • A. Zindal, H. Vashishtha, S.S. Singh, R. Prasad, J. Jain, Effect of cooling rates from solution treatment temperature on aging response and fracture behavior of a Mg–8Al–0.5Zn alloy, Met. Mater. Int. (2021). doi:10.1007/s12540-020-00911-6.
  • D. Dubey, K. Kadali, H. Kancharla, A. Zindal, J. Jain, K. Mondal, S.S. Singh, Effect of precipitate characteristics on the corrosion behavior of a AZ80 magnesium alloy, Met. Mater. Int. (2020). doi:10.1007/s12540-020-00764-z.
  • G.V. Raynor, The Physical Metallurgy of Magnesium and its Alloys, Pergamon Press, Oxford, 1959.
  • H. Wang, C.J. Boehlert, Q.D. Wang, D.D. Yin and W.J. Ding, In-situ analysis of the slip activity during tensile deformation of cast and extruded Mg-10Gd-3Y-0.5Zr (wt.%) at 250°C. Mater. Charact 116 (2016), pp. 8–17. doi:10.1016/j.matchar.2016.04.001.
  • J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama and K. Higashi, The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta Mater. 51 (2003), pp. 2055–2065. doi:10.1016/S1359-6454(03)00005-3.
  • D.H. Kang, D.W. Kim, S. Kim, G.T. Bae, K.H. Kim and N.J. Kim, Relationship between stretch formability and work-hardening capacity of twin-roll cast Mg alloys at room temperature. Scr. Mater 61 (2009), pp. 768–771. doi:10.1016/j.scriptamat.2009.06.026.
  • B. Shin, H. Kang and D. Bae, Texture development and deformation behavior of a statically recrystallized Mg-Al-Zn alloy sheet. Met. Mater. Int 18 (2012), pp. 23–27. doi:10.1007/s12540-012-0003-4.
  • N. Ansari, B. Tran, W.J. Poole, S.S. Singh, H. Krishnaswamy and J. Jain, High temperature deformation behavior of Mg-5wt.%Y binary alloy: constitutive analysis and processing maps. Mater. Sci. Eng. A 777 (2020), pp. 139051). doi:10.1016/j.msea.2020.139051.
  • D.G.J. Griffiths. Understanding texture weakening in magnesium rare earth alloys, Manchester, UK Univ. Manchester; 2015. (2015). https://www.escholar.manchester.ac.uk/uk-ac-man-scw:245820.
  • K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi and D. Letzig, Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets. Scr. Mater 63 (2010), pp. 725–730. doi:10.1016/j.scriptamat.2009.12.033.
  • L.J. Long, G.H. Huang, D.D. Yin, B. Ji, H. Zhou and Q.D. Wang, Effects of Y on the deformation mechanisms of extruded Mg-Y sheets during room-temperature compression. Metall. Mater. Trans. A Phys. Metall. Mater. Sci 51 (2020), pp. 2738–2751. doi:10.1007/s11661-020-05712-5.
  • N. Ansari, R. Sarvesha, S.Y. Lee, S.S. Singh and J. Jain, Influence of yttrium addition on recrystallization, texture and mechanical properties of binary Mg–Y alloys. Mater. Sci. Eng. A 793 (2020), pp. 139856). doi:10.1016/j.msea.2020.139856.
  • N. Stanford, The effect of rare earth elements on the behaviour of magnesium-based alloys: part 2 - recrystallisation and texture development. Mater. Sci. Eng. A 565 (2013), pp. 469–475. doi:10.1016/j.msea.2012.10.084.
  • M. Suzuki, T. Kimura, J. Koike and K. Maruyama, Effects of zinc on creep strength and deformation substructures in Mg-Y alloy. Mater. Sci. Eng. A 387–389 (2004), pp. 706–709. doi:10.1016/j.msea.2003.12.071.
  • L.L. Rokhlin, Magnesium Alloys Containing Rare Earth Metals: Structure and Properties, CRC Press, London, 2003.
  • Y. Yao, C. Liu, Y. Wan, S. Yu, Y. Gao and S. Jiang, Microstructure, texture and mechanical anisotropy of Mg-Gd-Y-Zr sheets processed via different rolling routes and reductions. Mater. Charact 161 (2020), pp. 110120). doi:10.1016/j.matchar.2020.110120.
  • Y.J. Kim, J.U. Lee, S.H. Kim, J. Yoon, Y.M. Kim and S.H. Park, Variation in crystallographic orientation and twinning activation with size of individual grains in rolled magnesium alloy. Met. Mater. Int 25 (2019), pp. 1541–1547. doi:10.1007/s12540-019-00321-3.
  • X. Zhou, Q. Liu, R. Liu and H. Zhou, Characterization of microstructure and mechanical properties of Mg–8Li–3Al–1Y alloy subjected to different rolling processes. Met. Mater. Int 24 (2018), pp. 1359–1368. doi:10.1007/s12540-018-0144-1.
  • N. Sriraman, S. Kumaran and S. Narayanan N, Influence of thermomechanical processing on microstructure, mechanical and strain hardening properties of single-phase Mg-4Li-0.5Ca alloy for structural application. J. Magnes. Alloy 8 (2020), pp. 1262–1268. doi:10.1016/j.jma.2020.08.013.
  • J. Wang, P. Jin, X. Li, F. Wei, B. Shi, X. Ding, M. Zhang, Effect of rolling with different amounts of deformation on microstructure and mechanical properties of the Mg–1Al–4Y alloy, Mater. Charact. 161 (2020). doi:10.1016/j.matchar.2020.110149.
  • L.B. Tong, J.B. Zhang, Q.X. Zhang, Z.H. Jiang, C. Xu, S. Kamado, D.P. Zhang, J. Meng, L.R. Cheng and H.J. Zhang, Effect of warm rolling on the microstructure, texture and mechanical properties of extruded Mg-Zn-Ca-Ce/La alloy. Mater. Charact 115 (2016), pp. 1–7. doi:10.1016/j.matchar.2016.03.012.
  • Q. Li, G.J. Huang, X.D. Huang, S.W. Pan, C.L. Tan and Q. Liu, On the texture evolution of Mg–Zn–Ca alloy with different hot rolling paths. J. Magnes. Alloy 5 (2017), pp. 166–172. doi:10.1016/j.jma.2017.06.001.
  • T. Wang, X. Zhou, Y. Li, Z. Zhang and Q. Le, Effect of rolling temperature on the microstructure and mechanical properties of Mg-2Zn-0.4Y alloy subjected to large strain rolling. Metals (Basel) 8 (2018), pp. 0–8. doi:10.3390/met8110937.
  • W. Liu, S. Feng, Z. Li, J. Zhao, G. Wu, X. Wang, L. Xiao and W. Ding, Effect of rolling strain on microstructure and tensile properties of dual-phase Mg–8Li–3Al–2Zn–0.5Y alloy. J. Mater. Sci. Technol 34 (2018), pp. 2256–2262. doi:10.1016/j.jmst.2018.05.002.
  • X. Li, T. Al-Samman and G. Gottstein, Mechanical properties and anisotropy of ME20 magnesium sheet produced by unidirectional and cross rolling. Mater. Des 32 (2011), pp. 4385–4393. doi:10.1016/j.matdes.2011.03.079.
  • S. Pan, X. Huang, Y. Xin, G. Huang, Q. Li, C. Tan and Q. Liu, The effect of hot rolling regime on texture and mechanical properties of an as-cast Mg–2Zn–2Gd plate. Mater. Sci. Eng. A 731 (2018), pp. 288–295. doi:10.1016/j.msea.2018.06.046.
  • J.J. Fundenburger, B. Beausir, JTEX-software for texture analysis, Universite de Lorraine - Metz, (2015). http://jtex-software.eu/.
  • B.P. Zhang, L. Geng, L.J. Huang, X.X. Zhang and C.C. Dong, Enhanced mechanical properties in fine-grained Mg-1.0Zn-0.5Ca alloys prepared by extrusion at different temperatures. Scr. Mater 63 (2010), pp. 1024–1027. doi:10.1016/j.scriptamat.2010.07.038.
  • M. Shalbafi, R. Roumina and R. Mahmudi, Hot deformation of the extruded Mg–10Li–1Zn alloy: constitutive analysis and processing maps. J. Alloys Compd 696 (2017), pp. 1269–1277. doi:10.1016/j.jallcom.2016.12.087.
  • Y. Iwahashi, Z. Horita, M. Nemoto and T.G. Langdon, An investigation of microstructural evolution during equal-channel angular pressing. Acta Mater. 45 (1997), pp. 4733–4741. doi:10.1016/S1359-6454(97)00100-6.
  • T. Al-Samman and G. Gottstein, Influence of strain path change on the rolling behavior of twin roll cast magnesium alloy. Scr. Mater 59 (2008), pp. 760–763. doi:10.1016/j.scriptamat.2008.06.023.
  • M. Lentz, R.S. Coelho, B. Camin, C. Fahrenson, N. Schaefer, S. Selve, T. Link, I.J. Beyerlein and W. Reimers, In-situ, ex-situ EBSD and (HR-)TEM analyses of primary, secondary and tertiary twin development in an Mg-4wt%Li alloy. Mater. Sci. Eng. A 610 (2014), pp. 54–64. doi:10.1016/j.msea.2014.05.025.
  • N. Ansari, S.Y. Lee, S.S. Singh and J. Jain, Influence of yttrium-induced twinning on the recrystallization behavior of magnesium alloys. J. Mater. Sci (2021), pp. 1–14. doi:10.1007/s10853-021-06418-8.
  • D. Guan, W.M. Rainforth, L. Ma, B. Wynne and J. Gao, Twin recrystallization mechanisms and exceptional contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 126 (2017), pp. 132–144. doi:10.1016/j.actamat.2016.12.058.
  • O. Engler and V. Randle, Introduction to Texture Analysis: Macrotexture, Microtexture, and Orientation Mapping, CRC Press, London, 2009.
  • Z.Z. Peng, X.H. Shao, X.W. Guo, J. Wang, Y.J. Wang and X.L. Ma, Atomic-scale insight into structure and interface of Al 2 Y phase in an Mg-Al-Y alloy. Adv. Eng. Mater 20 (2018), pp. 1–6. doi:10.1002/adem.201701015.
  • M.R. Barnett, Twinning and the ductility of magnesium alloys. Part II. “Contraction” twins. Mater. Sci. Eng. A 464 (2007), pp. 8–16. doi:10.1016/j.msea.2007.02.109.
  • E.O. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. Sect. B 64 (1951), pp. 747.
  • N.J. Petch, The cleavage strength of polycrystals. J. Iron Steel Inst 174 (1953), pp. 25–28.
  • C.H. Cáceres and P. Lukác, Strain hardening behaviour and the Taylor factor of pure magnesium. Philos. Mag 88 (2008), pp. 977–989. doi:10.1080/14786430801968611.
  • S.R. Kalidindi, Modeling the strain hardening response of low stacking fault energy fcc alloys. Int. J. Plast 14 (1998), pp. 1265–1277.
  • J.E. Jin and Y.K. Lee, Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel. Acta Mater. 60 (2012), pp. 1680–1688. doi:10.1016/j.actamat.2011.12.004.
  • D. Li, Y. Feng, S. Song, Q. Liu, Q. Bai, G. Wu, N. Lv and F. Ren, Influences of Nb-microalloying on microstructure and mechanical properties of Fe-25Mn-3Si-3Al TWIP steel. Mater. Des 84 (2015), pp. 238–244. doi:10.1016/j.matdes.2015.06.092.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.