60
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Spin-dependent tunnelling time in phosphorene superlattice

ORCID Icon
Pages 987-1000 | Received 20 Oct 2022, Accepted 05 Feb 2023, Published online: 02 Mar 2023

References

  • K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim, Two-dimensional atomic crystals. Proc. Nat Acad. Sci. 102 (2005), pp. 10451–10453.
  • K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Two-dimensional gas of massless dirac fermions in graphene. Nature 438 (2005), pp. 197–200.
  • Y. Zhang, Y. Wen Tan, H.L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438 (2005), pp. 201–204.
  • N. Stander, B. Huard, and D. Goldhaber-Gordon, Evidence for Klein tunneling in graphene p–n junctions. Phys. Rev. Lett. 102 (2009), p. 026807.
  • K. Sengupta and G. Baskaran, Tuning Kondo physics in graphene with gate voltage. Phys. Rev. B 77 (2008), p. 045417.
  • C.W.J. Beenakker, Specular Andreev reflection in graphene. Phys. Rev. Lett. 97 (2006), p. 067007.
  • A. Avsar, J.Y. Tan, T. Taychatanapat, J. Balakrishnan, G.K.W. Koon, Y. Yeo, J. Lahiri, A. Carvalho, A.S. Rodin, E.C.T. ƠFarrell, G. Eda, A.H. Castro Neto, and B. Özyilmaz, Spin–orbit proximity effect in graphene. Nat. Commun. 5 (2014), pp. 1–6.
  • W. Lu, H. Nan, J. Hong, Y. Chen, C. Zhu, Z. Liang, X. Ma, Z. Ni, C. Jin, and Z. Zhang, Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7 (2014), pp. 853–859.
  • J. Pei, X. Gai, J. Yang, X. Wang, Z. Yu, D.-Y. Choi, B. Luther-Davies, and Y. Lu, Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7 (2016), pp. 1–8.
  • D. Zhou, Q. Meng, N. Si, X. Zhou, S. Zhai, Q. Tang, Q. Ji, M. Zhou, T. Niu, and H. Fuchs, Epitaxial growth of flat, metallic monolayer phosphorene on metal oxide. ACS Nano 14 (2020), pp. 2385–2294.
  • L. Liang, J. Wang, W. Lin, B.G. Sumpter, V. Meunier, and M. Pan, Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14 (2014), pp. 6400–6406.
  • G. Qin, Q.-B. Yan, Z. Qin, S.-Y. Yue, M. Hu, and G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles. Phys. Chem. Chem. Phys. 17 (2015), pp. 4854–4858.
  • L. Li, F. Yang, G.J. Ye, Z. Zhang, Z. Zhu, W. Lou, X. Zhou, L. Li, K. Watanabe, T. Taniguchi, K. Chang, Y. Wang, X.H. Chen, and Y. Zhang, Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotech. 11 (2016), pp. 593–597.
  • L. Li, Y. Yu, G.J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X.H. Chen, and Y. Zhang, Black phosphorus field-effect transistors. Nat. Nanotech. 9 (2014), pp. 372–377.
  • X. Han, H. Morgan Stewart, S.A. Shevlin, C.R.A. Catlow, and Z.X. Guo, Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. Nano Lett. 14 (2014), pp. 4607–4614.
  • P.D. Khang, M. Davoudiniya, L.T.T. Phuong, T.C. Phong, and M. Yarmohammadi, Optical interband transitions in strained phosphorene. Phys. Chem. Chem. Phys. 21 (2019), pp. 15133–15141.
  • A. Rodin, A. Carvalho, and A. Castro Neto, Strain-induced gap modification in black phosphorus. Phys. Rev. Lett. 112 (2014), p. 176801.
  • X. Peng, Q. Wei, and A. Copple, Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90 (2014), p. 085402.
  • Y. Luo, Y. Xie, X. Ye, and Y. Wang, A self-powered phosphorene photodetector with excellent spin-filtering and spin-valve effects. Phys. Chem. Chem. Phys. 21 (2019), pp. 7613–7616.
  • P. Kumari, S. Majumder, S. Rani, A.K. Nair, K. Kumari, M.V. Kamalakar, and S.J. Ray, High efficiency spin filtering in magnetic phosphorene. Phys. Chem. Chem. Phys. 22 (2020), pp. 5893–5901.
  • Q. Wu, L. Shen, M. Yang, Y. Cai, Z. Huang, and Y.P. Feng, Electronic and transport properties of phosphorene nanoribbons. Phys. Rev. B 92 (2015), p. 035436.
  • M. Tahir, P. Vasilopoulos, and F.M. Peeters, Magneto-optical transport properties of monolayer phosphorene. Phys. Rev. B 92 (2015), p. 045420.
  • F. Zhai, W. Hu, and J. Lu, Anisotropic tunneling resistance in a phosphorene-based magnetic barrier. Phys. Rev. B 96 (2017), p. 165416.
  • M. Zare, B. Zare Rameshti, F.G. Ghamsari, and R. Asgari, Thermoelectric transport in monolayer phosphorene. Phys. Rev. B 95 (2017), p. 045422.
  • G. Gaddemane, W.G. Vandenberghe, M.L. Van de Put, S. Chen, S. Tiwari, E. Chen, and M.V. Fischetti, Theoretical studies of electronic transport in monolayer and bilayer phosphorene: A critical overview. Phys. Rev. B 98 (2018), p. 115416.
  • K. Li and F. Cheng, Effects of strain on Goos-Hänchen shifts of monolayer phosphorene. Phys. E 97 (2018), pp. 335–339.
  • G. Qin and M. Hu, Thermal transport in phosphorene. Small 14 (2018), p. 1702465.
  • R. Biswas, R. Dey and C. Sinha, Transmission and conductance for a driven vector barrier in phosphorene. Superlattice. Microst. 133 (2019), p. 106175.
  • J. Jiang, Q. Zhang, Z.M. Kwok, and S. Chan, Spin transport in proximity-induced ferromagnetic phosphorene nanoribbons. Superlattice. Microst. 136 (2019), p. 106324.
  • H. Nikoofard, M. Esmaeilzadeh, E. Heidari-Semiromi, and J.T. Sun, Quantum charge and spin pumping in monolayer phosphorene. Phys. Rev. B 102 (2020), p. 035435.
  • L.T.T. Phuong, T.C. Phong, and M. Yarmohammadi, Spin-splitting effects on the interband optical conductivity and activity of phosphorene. Sci. Rep. 10 (2020), pp. 1–14.
  • B. Li, L. Zhu, C. Wu, K. Yao, and C.-R. Chang, Photon-assisted spin transport in blue phosphorene nanotubes. Nanotechnology 31 (2020), p. 145206.
  • R. Farghadan, Spin photocurrents in zigzag phosphorene nanoribbons: From infrared to ultraviolet. J. Appl. Phys. 128 (2020), p. 013103.
  • T. Pandey, L. Covaci, M.V. Milošević, and F.M. Peeters, Flexoelectricity and transport properties of phosphorene nanoribbons under mechanical bending. Phys. Rev. B 103 (2021), p. 235406.
  • Y. Xie, J. Zhao, Y. Hu, X. Ye, Y. Xie, and R. Cao, Outstanding spin-transport properties of a flexible phosphorene photodetector driven by the photogalvanic effect under mechanical strains. Chem. Chem. Phys. 23 (2021), pp. 11961–11967.
  • T. Sahdane, S. Mtougui, F. Goumrhar, N. Mamouni, E. Salmani, H. Ez-Zahraouy, A. Benyoussef, and O. Mounkachi, Magnetic phase transitions of phosphorene-like nano-structure: Monte Carlo study. Philos. Mag. 101 (2021), pp. 1836–1848.
  • N. Liu, H. Zhu, Y. Feng, S. Zhu, K.L. Yao, and S. Wang, Tuning of the electronic structures and spin-dependent transport properties of phosphorene nanoribbons by vanadium substitutional doping. Phys. E 138 (2022), p. 115067.
  • V.S. Olkhovsky, E. Recami, and J. Jakiel, Unified time analysis of photon and particle tunnelling. Phys. Rep. 398 (2004), pp. 133–178.
  • P. Pereyra, Closed formulas for tunneling time in superlattices. Phys. Rev. Lett. 84 (2000), pp. 1772–1775.
  • H.G. Winful, Delay time and the Hartman effect in quantum tunneling. Phys. Rev. Lett. 91 (2003), p. 260401.
  • T.E. Hartman, Tunneling of a wave packet. J. Appl. Phys. 33 (1962), pp. 3427–3433.
  • J.C. Martinez and E. Polatdemir, Origin of the Hartman effect. Phys. Lett. A 351 (2006), pp. 31–36.
  • S. Kudaka and S. Matsumoto, Questions concerning the generalized Hartman effect. Phys. Lett. A 375 (2011), pp. 3259–3263.
  • A. Khan, P.K. Mahapatra, S.P. Bhattacharya, and S. Noor Mohammad, Resonant tunnelling lifetime in the semiconductor superlattice. Philos. Mag. 84 (2004), pp. 547–563.
  • Y. Guo, C.-E. Shang, and X.-Y. Chen, Spin-dependent delay time and the Hartman effect in tunneling through diluted-magnetic-semiconductor/semiconductor heterostructures. Phys. Rev. B 72 (2005), p. 045356.
  • R.A. Sepkhanov, M.V. Medvedyeva, and C.W.J. Beenakker, Hartman effect and spin precession in graphene. Phys. Rev. B 80 (2008), p. 245433.
  • Z. Wu, K. Chang, J.T. Liu, X.J. Li, and K.S. Chan, The Hartman effect in graphene. J. Appl. Phys. 105 (2009), p. 043702.
  • J.-T. Liu, F.-H. Su, H. Wang, and X.-H. Deng, Optical field modulation on the group delay of chiral tunneling in graphene. New J. Phys. 14 (2012), p. 013012.
  • J.W. Kłos, Y.S. Dadoenkova, J. Rychły, N.N. Dadoenkova, I.L. Lyubchanskii, and J. Barnaś, Hartman effect for spin waves in exchange regime. Sci. Rep. 8 (2018), pp. 1–14.
  • H. Hedayati Kh and E. Faizabadi, Transport characteristics and dwell time in a bilayer phosphorene barrier. J. Phys.: Condens. Matter. 31 (2018), p. 035302.
  • F. Sattari and S. Mirershadi, Spin and valley dependent delay time in MoS2 junction. Phys. Lett. A 406 (2021), p. 127461.
  • M.R. Setare, K. Ghasemian, and D. Jahani, Hartman effect at merging point in graphene under uniaxial strain. Phys. Lett. A 387 (2021), p. 127004.
  • Y. Fattasse, M. Mekkaoui, A. Jellal, and A. Bahaoui, Gap-tunable of tunneling time in graphene magnetic barrier. Phys. E 134 (2021), p. 114924.
  • Q.-M. Guo, M.-W. Lu, X.-H. Huang, S.-Q. Yang, and Y.-J. Qin, Spin polarization in time domain for electrons in a magnetic microstructure. Vacuum 186 (2021), p. 110059.
  • D.J.P. de Sousa, L.V. de Castro, D.R. da Costa, and J.M. Pereira Jr, Boundary conditions for phosphorene nanoribbons in the continuum approach. Phys. Rev. B 94 (2016), p. 235415.
  • J.M. Pereira Jr and M.I. Katsnelson, Landau levels of single-layer and bilayer phosphorene. Phys. Rev. B 92 (2015), p. 075437.
  • E. Taghizadeh Sisakht, F. Fazileh, M.H. Zare, M. Zarenia, and F.M. Peeters, Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons. Phys. Rev. B 94 (2016), p. 085417.
  • Y. Mohammadi and B. Arghavani Nia, Strain engineering the charged-impurity-limited carrier mobility in phosphorene. Superlattice. Microst. 89 (2016), pp. 204–215.
  • C.H. Yang, J.Y. Zhang, G.X. Wang, and C. Zhang, Dependence of the optical conductivity on the uniaxial and biaxial strains in black phosphorene. Phys. Rev. B 97 (2018), p. 245408.
  • F. Sattari and E. Faizabadi, Tunneling time and Hartman effect in a ferromagnetic graphene superlattice. AIP. Adv. 2 (2012), p. 012123.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.