105
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The effect of quenching on the hinderance of the NbC growth process in a model microalloyed steel

, , &
Pages 933-947 | Received 19 Aug 2022, Accepted 30 Nov 2022, Published online: 02 Mar 2023

References

  • D. Poddar. Interaction between precipitation and dislocation substructure in a model microalloyed steel, PhD diss., Deakin University, 2015.
  • D. Poddar, P. Cizek, H. Beladi and P.D. Hodgson, Evolution of strain-induced precipitates in a model austenitic Fe–30Ni–Nb steel and their effect on the flow behaviour. Acta. Mater 80 (2014), pp. 1–15. doi:10.1016/j.actamat.2014.07.035.
  • D. Poddar, P. Cizek, H. Beladi and P.D. Hodgson, The effect of strain and annealing on the growth of NbC precipitates during two-pass Hot deformation of a Fe-30Ni-Nb model microalloyed steel. Metall. Trans. A 52(10) (2021), pp. 4357–4367. doi:10.1007/s11661-021-06388-1.
  • B. Dutta, E.J. Palmiere and C.M. Sellars, Modelling the kinetics of strain induced precipitation in Nb microalloyed steels. Acta Mater. 49(5) (2001), pp. 785–794. doi:10.1016/S1359-6454(00)00389-X.
  • S.G. Hong, K.B. Kang and C.G. Park, Strain-induced precipitation of NbC in Nb and Nb–Ti microalloyed HSLA steels. Scr. Mater 46(2) (2002), pp. 163–168. doi:10.1016/S1359-6462(01)01214-3.
  • E.V. Pereloma, B.R. Crawford and P.D. Hodgson, Effect of niobium clustering and precipitation on strength of an NbTi-microalloyed ferritic steel. Mater. Sci. Eng. A 299(1-2) (2001), pp. 27–37. doi:10.1016/S0921-5093(00)01423-4.
  • M. Gómez, S.F. Medina, A. Quispe and P. Valles, Static recrystallization and induced precipitation in a low Nb microalloyed steel. ISIJ Int. 42(4) (2002), pp. 423–431. doi:10.2355/isijinternational.42.423.
  • D. Poddar, P. Cizek, H. Beladi and P.D. Hodgson, The evolution of microbands and their interaction with NbC precipitates during hot deformation of a Fe–30Ni–Nb model austenitic steel. Acta. Mater 99 (2015), pp. 347–362. doi:10.1016/j.actamat.2015.08.003.
  • R.S. Barnes, The generation of vacancies in metals. Philos. Mag 5(54) (1960), pp. 635–646. doi:10.1080/14786436008241214.
  • D. Poddar, A. Chakraborty and R. Kumar, Annealing twin evolution in the grain-growth stagnant austenitic stainless steel microstructure. Mat. Char 155 (2019), pp. 109791). doi:10.1016/j.matchar.2019.109791.
  • M.H. Loretto, P.J. Phillips and M.J. Mills, Stacking fault tetrahedra in metals. Scr. Mater 94 (2015), pp. 1–4. doi:10.1016/j.scriptamat.2014.07.020.
  • Y. Shirai, K. Furukawa, J. Takamura, W. Yamada and S. Iwata, Nucleation process of stacking fault tetrahedra in gold studied by positron lifetime spectroscopy. App. Phy. A 37(2) (1985), pp. 65–72. doi:10.1007/BF00618855.
  • K.H. Westmacott, R.S. Barnes, D. Hull and R.E. Smallman, Vacancy trapping in quenched aluminium alloys. Philos. Mag. 6(67) (1961), pp. 929–935. doi:10.1080/14786436108243348.
  • M. Doyama, Vacancy-solute interactions in metals. J. Nuc. Mat 69 (1978), pp. 350–361. doi:10.1016/0022-3115(78)90253-2.
  • Y. Nagai, K. Takadate, Z. Tang, H. Ohkubo, H. Sunaga, H. Takizawa and M. Hasegawa, Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys. Phys. Rev. B 67(22) (2003), pp. 224202). doi:10.1103/PhysRevB.67.224202.
  • Y. Nagai, M. Murayama, Z. Tang, T. Nonaka, K. Hono and M. Hasegawa, Role of vacancy–solute complex in the initial rapid age hardening in an Al–Cu–Mg alloy. Acta Mater. 49(5) (2001), pp. 913–920. doi:10.1016/S1359-6454(00)00348-7.
  • S. Schuwalow, J. Rogal and R. Drautz, Vacancy mobility and interaction with transition metal solutes in Ni, JOP. Cond. Mat 26(48) (2014), pp. 485014). doi:10.1088/0953-8984/26/48/485014.
  • A.J.R. De Kock, Vacancy clusters in dislocation-free silicon. App. Phys. Lett 16(3) (1970), pp. 100–102. doi:10.1063/1.1653111.
  • K.A. Jackson, The nucleation of dislocation loops from vacancies. Philos. Mag 7(79) (1962), pp. 1117–1127. doi:10.1080/14786436208209112.
  • K. Urban. Growth of interstitial and vacancy agglomerates in nickel during electron irradiation in voids formed by irradiation of reactor materials. The Brit. Nuc. Eng. Soc. European Conference (24–25 March, 1971).
  • E. Ozawa and H. Kimura, Excess vacancies and the nucleation of precipitates in aluminum-silicon alloys. Acta Mater. 18(9) (1970), pp. 995–1004. doi:10.1016/0001-6160(70)90055-6.
  • T. Gladman, The Physical Metallurgy of Microalloyed Steels, Maney Materials Science, London, 2002.
  • A. Tehranchi, X. Zhang, G. Lu and W.A. Curtin, Hydrogen–vacancy–dislocation interactions in α-Fe. Modell. Simul. Mater. Sci. Eng. 25(2) (2016), pp. 025001). doi:10.1088/1361-651X/aa52cb.
  • A. Bakaev, D. Terentyev, X. He, E.E. Zhurkin and D. Van Neck, Interaction of carbon–vacancy complex with minor alloying elements of ferritic steels. JONM 451(1-3) (2014), pp. 82–87.
  • R. Domínguez-Reyes, M.A. Auger, M.A. Monge and R. Pareja, Positron annihilation study of the vacancy clusters in ODS Fe–14Cr alloys. Philos. Mag 97(11) (2017), pp. 833–850. doi:10.1080/14786435.2017.1280621.
  • R.W. Siegel, Positron annihilation spectroscopy. Annu. Rev. Mater. Sci. 10(1) (1980), pp. 393–425. doi:10.1146/annurev.ms.10.080180.002141.
  • A.R.P. Singh, S. Nag, J.Y. Hwang, G.B. Viswanathan, J. Tiley, R. Srinivasan, H.L. Fraser and R. Banerjee, Influence of cooling rate on the development of multiple generations of γ′ precipitates in a commercial nickel base superalloy. Mat. Char 62(9) (2011), pp. 878–886. doi:10.1016/j.matchar.2011.06.002.
  • G. Gao, Y. Li, Z. Wang, H. Di, J. Li and G. Xu, Effects of the Quenching Rate on the Microstructure, Mechanical Properties and Paint Bake-Hardening Response of Al–Mg–Si Automotive Sheets. Materials. (Basel) 12(21) (2019), pp. 3587). doi:10.3390/ma12213587.
  • D. Kuhlmann-Wilsdorf, Theory of the interaction of vacancies with stress fields in metals. II. The interaction between vacancies and dislocations. JOAP 36(2) (1965), pp. 637–646.
  • J.C. Haley, F. Liu, E. Tarleton, A.C.F. Cocks, G.R. Odette, S. Lozano-Perez and S.G. Roberts, Helical dislocations: Observation of vacancy defect bias of screw dislocations in neutron irradiated Fe–9Cr. Acta Mater. 181 (2019), pp. 173–184. doi:10.1016/j.actamat.2019.09.031.
  • K. Arakawa, T. Amino and H. Mori, Direct observation of the coalescence process between nanoscale dislocation loops with different Burgers vectors. Acta Mater. 59(1) (2011), pp. 141–145. doi:10.1016/j.actamat.2010.09.018.
  • N.A. Mancini, Quenching rate and defect clusters in gold. Philos. Mag. 21(173) (1970), pp. 1081–1085. doi:10.1080/14786437008238492.
  • E. Ozawa and H. Kimura, Behavior of excess vacancies during the nucleation of precipitates in aluminum-silicon alloys. Mat. Sci. and Eng 8(6) (1971), pp. 327–335. doi:10.1016/0025-5416(71)90100-5.
  • E. Ozawa and H. Kimura, Excess vacancies and the nucleation of precipitates in aluminum-silicon alloys. Acta Mater. 18(9) (1970), pp. 995–1004. doi:10.1016/0001-6160(70)90055-6.
  • J.D. Embury and R.B. Nicholson, The nucleation of precipitates: the system Al-Zn-Mg. Acta Mater. 13(4) (1965), pp. 403–417. doi:10.1016/0001-6160(65)90067-2.
  • S. Jiang, L.-q. Xu and F.-r. Wan, Effect of precipitates on high-temperature strength and irradiation behavior of vanadium-based alloys. JOISRI 25(12) (2018), pp. 1270–1277.
  • J.M. Rosalie, L. Bourgeois and B.C. Muddle, Precipitate assemblies formed on dislocation loops in aluminium-silver-copper alloys. Philos. Mag. 89(25) (2009), pp. 2195–2211. doi:10.1080/14786430903066959.
  • M. Militzer, W.P. Sun and J.J. Jonas, Modelling the effect of deformation-induced vacancies on segregation and precipitation. Acta Metal. Mater 42(1) (1994), pp. 133–141. doi:10.1016/0956-7151(94)90056-6.
  • S. Li, Y. Li, Y. Lo, T. Neeraj, R. Srinivasan, X. Ding, J. Sun, L. Qi, P. Gumbsch and J. Li, The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in α-Fe. IJP 74 (2015), pp. 175–191.
  • J.L. Jordan and S.C. Deevi, Vacancy formation and effects in FeAl. Intermetallics 11(6) (2003), pp. 507–528. doi:10.1016/S0966-9795(03)00027-X.
  • D.S. MacKenzie. Proceedings of the 22nd Heat Treating Society Conference and the 2nd International Surface Engineering Congress. ASM International (2003), p. 207.
  • D.R. Harries and A.D. Marwick, Non-equilibrium segregation in metals and alloys. Philos. Trans. of the Royal Soc. of Lon. Series A, Math. and Phy. Sci. 295(1413) (1980), pp. 197–207.
  • T.M. Williams, A.M. Stoneham and D.R. Harries, The segregation of boron to grain boundaries in solution-treated Type 316 austenitic stainless steel.”. Metal Sci 10(1) (1976), pp. 14–19. doi:10.1179/030634576790431471.
  • K.R. Williams and S.B. Fisher, The interaction of dislocation loop and γ’ precipitate in nickel based alloys. Radiat. Eff. 25(2) (1975), pp. 97–103. doi:10.1080/00337577508234734.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.