112
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Tridimensional electric field effect on diamagnetic susceptibility and polarisability of a donor impurity in a double quantum dot

, , , ORCID Icon, &
Pages 1001-1016 | Received 08 Nov 2022, Accepted 06 Feb 2023, Published online: 02 Mar 2023

References

  • V.V. Vladimir, V. Mitin, V.A. Vi︠a︡cheslav, A. Kochelap, and M.A. Stroscio, Introduction to nanoelectronics : science, nanotechnology, engineering, and applications, 2008.
  • R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha and L.M.K. Vandersypen, Spins in few-electron quantum dots. Rev. Mod. Phys 79 (2007), pp. 1217–1265.
  • A. Ed-dahmouny, A. Sali, N. Es-sbai, R. Arraoui and C.A. Duque, The impact of hydrostatic pressure and temperature on the binding energy, linear, third-order nonlinear, and total optical absorption coefficients and refractive index changes of a hydrogenic donor impurity confined in GaAs / Al x Ga 1 − x As double. Eur. Phys. J. Plus 123 (2022), pp. 784.
  • S.Q. Zhong, S.C. Zhao and S.N. Zhu, Photovoltaic performances in a cavity-coupled double quantum dots photocell. Results Phys. 27 (2021), pp. 104503.
  • A. Fakkahi, A. Sali, M. Jaouane and R. Arraoui, Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot. Appl. Phys. A Mater. Sci. Process 127 (2021), pp. 1–9.
  • M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi and R. Arraoui, Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots. Physica E 127 (2021), pp. 114543.
  • A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui and A. Ed-Dahmouny, Study of photoionization cross section and binding energy of shallow donor impurity in multilayered spherical quantum dot. Physica E 115351 (2022), pp. 115351.
  • A. Sali, M. Fliyou, H. Satori and H. Loumrhari, The effect of a strong magnetic field on the binding energy and the photoionization process in quantum-well wires. J. Phys. Chem. Solids 64 (2003), pp. 31–41.
  • A. Sali, H. Satori, M. Fliyou and H. Loumrhari, The photoionization cross-section of impurities in quantum dots. Phys. Status Solidi Basic Res 232 (2002), pp. 209–219.
  • A. Sali and H. Satori, The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation. Superlattices Microstruct. 69 (2014), pp. 38–52.
  • A. Sali, J. Kharbach, A. Rezzouk and M. Ouazzani Jamil, The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot. Superlattices Microstruct. 104 (2017), pp. 93–103.
  • O. Akankan, I. Erdogan and H. Akbas, Spatial electric field effect on the self-polarization in GaAs/AlAs square quantum-well wires. Physica E 35 (2006), pp. 217–221.
  • K. Rahmani, Y. Chrafih, S. M’Zred, S. Janati, I. Zorkani, A. Jorio and A. Mmadi, Polarizability and binding energy of a shallow donor in spherical quantum dot-quantum well (QD-QW). J. Phys. Conf. Ser 984 (2018), pp. 012001.
  • A. John Peter, The effect of laser field intensity on polarizability in a quantum well. Phys. Lett. Sect. A Gen. At. Solid State Phys 374 (2010), pp. 2170–2174.
  • E. Tangarife and C.A. Duque, Combined effects of hydrostatic pressure and electric field on the donor binding energy and polarizability in laterally coupled double InAs/GaAs quantum-well wires. Appl. Surf. Sci 256 (2010), pp. 7234–7241.
  • A.L. Morales, N. Raigoza, E. Reyes-Gómez, J.M. Osorio-Guillén and C.A. Duque, Impurity-related polarizability and photoionization-cross section in GaAs-Ga1 - x Alx As double quantum wells under electric fields and hydrostatic pressure. Superlattices Microstruct. 45 (2009), pp. 590–597.
  • K. El-Bakkari, A. Sali, E. Iqraoun and A. Ezzarfi, Polaron and conduction band non-parabolicity effects on the binding energy, diamagnetic susceptibility and polarizability of an impurity in quantum rings. Superlattices Microstruct. 148 (2020), pp. 106729.
  • O. Akankan, A study of the effect of spatial electric field on the binding energy and polarization of a donor impurity in a GaAs/AlAs tetragonal quantum dot (TQD). Superlattices Microstruct. 55 (2013), pp. 45–52.
  • H. Dakhlaoui, S. Almansour, W. Belhadj and B.M. Wong, Modulating the conductance in graphene nanoribbons with multi-barriers under an applied voltage. Results Phys. 27 (2021), pp. 104505.
  • A. AL-Naghmaish, H. Dakhlaoui, T. Ghrib and B.M. Wong, Effects of magnetic, electric, and intense laser fields on the optical properties of AlGaAs/GaAs quantum wells for terahertz photodetectors. Phys. B Condens. Matter 635 (2022), pp. 413838.
  • R. En-nadir, H. El-ghazi, H. Abboudi, I. Maouhoubi, A. Jorio, I. Zorkani and M. El-Ganaoui, The electric and magnetic field effects on the optical absorption in double QWs with squared, U-shaped and V-shaped confinement potentials. Philos. Mag 103(4) (2022), pp. 321–334.
  • H. El Ghazi and A. John Peter, Impurity-related binding energy in strained (In,Ga)N asymmetric coupled QWs under strong built-in electric field. Solid State Commun. 201 (2015), pp. 5–8.
  • E. Iqraoun, A. Sali, K. El-Bakkari, M.E. Mora-Ramos and C.A. Duque, Binding energy, polarizability, and diamagnetic response of shallow donor impurity in zinc blende GaN quantum dots. Superlattices Microstruct. 163 (2022), pp. 107142.
  • J.J. Liu, M. Shen and S.W. Wang, The influence of compressive stress on shallow-donor impurity states in symmetric GaAs-Ga1-xAlxAs double quantum dots. J. Appl. Phys 101 (2007), pp. 1–6.
  • R. Arraoui, A. Sali, M. Jaouane and A. Fakkahi, The spatial electric field effect on the impurity binding energy and self-polarization in a double quantum dot. Eur. Phys. J. Plus 137 (2022), pp. 979.
  • R. Khordad, A. Gharaati and M. Haghparast, Polarizability of a hydrogenic donor impurity in a ridge quantum wire. Curr. Appl. Phys 10 (2010), pp. 199–202.
  • A. Ed-dahmouny, A. Sali, N. Es-Sbai, R. Arraoui and M. Jaouane, Combined effects of hydrostatic pressure and electric field on the donor binding energy, polarizability, and photoionization cross-section in double GaAs / Ga 1 − x Al x As quantum dots. Eur. Phys. J. B 95 (2022), pp. 136.
  • K. El Messaoudi, A. Zounoubi, I. Zorkani and A. Jorio, Finite-barrier height effect on the polarizability of a shallow magneto-donor in a quantum box. Phys. Status Solidi Basic Res 233 (2002), pp. 270–279.
  • N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro and C.A. Duque, Stress effects on shallow-donor impurity states in symmetrical GaAs/AlxGa1 − xAs double quantum wells. Phys. Rev. B - Condens. Matter Mater. Phys 69 (2004), pp. 1–8.
  • R. Arraoui, A. Sali, A. Ed-Dahmouny, M. Jaouane and A. Fakkahi, Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot. Superlattices Microstruct. 159 (2021), pp. 107049.
  • P. Nithiananthi and K. Jayakumar, Diamagnetic susceptibility of hydrogenic donor impurity in low-dimensional semiconducting systems. Solid State Commun. 137 (2006), pp. 427–430.
  • A. Ghosh, A. Bera and M. Ghosh, Influence of binding energy on dipole moment, polarizability and self-polarization effect of impurity doped quantum dots: role of noise. Chem. Phys. Lett 678 (2017), pp. 119–122.
  • S. Ves, K. Strössner, C.K. Kim and M. Cardona, Dependence of the direct energy gap of GaP on hydrostatic pressure. Solid State Commun. 55 (1985), pp. 327–331.
  • S. Adachi, Gaas, AlAs, and AlxGa1-xAs. J. Appl. Phys 58(3) (1985), pp. R1-R29.
  • A. Sali, A. Rezzouk, N. Es-Sbai and M.O. Jamil, The simultaneous effects of the wetting layer, intense laser and the conduction band non-parabolicity on the donor binding energy in a InAs/GaAs conical quantum dot using the numerical FEM. Indian J. Pure Appl. Phys 57 (2019), pp. 483–491.
  • A. Sivakami and M. Mahendran, Hydrostatic pressure and conduction band non-parabolicity effects on the impurity binding energy in a spherical quantum dot. Phys. B Condens. Matter 405 (2010), pp. 1403–1407.
  • G.X. Wang, L.L. Zhang and H. Wei, External electric field effect on shallow donor impurity states in zinc-blende InxGa1- xN/GaN symmetric coupled quantum dots. Adv. Condens. Matter Phys 2017 (2017), pp. 5652763.
  • H. Wu, H. Wang, L. Jiang, Q. Gong and S. Feng, The electric field effect on binding energy of hydrogenic impurity in zinc-blende GaN/AlxGa1-xN spherical quantum dot. Phys. B Condens. Matter 404 (2009), pp. 122–126.
  • C.A. Duque, A. Montes and A.L. Morales, Binding energy and polarizability in GaAs-(Ga,Al)As quantum-well wires. Phys. B Condens. Matter 302–303 (2001), pp. 84–87.
  • A. John Peter, Polarizabilities of shallow donors in finite-barrier nanodots. Superlattices Microstruct. 44 (2008), pp. 106–111.
  • S. Rajashabala and K. Navaneethakrishnan, Effects of dielectric screening and position dependent effective mass on donor binding energies and on diamagnetic susceptibility in a quantum well. Superlattices Microstruct. 43 (2008), pp. 247–261.
  • A.M.J.D. Reuben and K. Jayakumar, Diamagnetic susceptibility of a hydrogenic donor in a quantum dot. Phys. Status Solidi Basic Res 243 (2006), pp. 4020–4024.
  • A.L. Morales, A. Montes, S.Y. López, N. Raigoza and C.A. Duque, Donor-related density of states and polarizability in a GaAs-(Ga, Al)As quantum-well under hydrostatic pressure and applied electric field. Phys. Status Solidi Conf 656 (2003), pp. 652–656. doi:10.1002/pssc.200306176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.