138
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

First-principles calculations to investigate electronic, magnetic and half-metallic ferromagnetic properties of full-Heusler Mn2OsSn

, , , , , , , , , , & show all
Pages 1090-1114 | Received 17 Jan 2023, Accepted 10 Feb 2023, Published online: 26 Feb 2023

References

  • S. Fukami, W.A. Borders, A.Z. Pervaiz, K.Y. Camsari, S. Datta and H. Ohno, Probabilistic computing based on spintronics technology, in 2020 IEEE Silicon Nanoelectronics Workshop (SNW), IEEE, 2020. pp. 21–22.
  • S.M. Yakout, Spintronics: future technology for new data storage and communication devices. J. Supercond. Novel Magn. 33 (2020), pp. 2557–2580.
  • X. Wang, Z. Cheng, G. Zhang, H. Yuan, H. Chen and X.-L. Wang, Spin-gapless semiconductors for future spintronics and electronics. Phys. Rep. 888 (2020), pp. 1–57.
  • H. Zhou, C. Wang, Z. Li, Z. Wang, T. Liu, B. Wu and W. Zhao, Design of an erasable spintronics memory based on current-path-dependent field-free spin orbit torque. AIP. Adv. 10 (2020), pp. 015317.
  • S. Motaman, M.N.I. Khan and S. Ghosh, Novel application of spintronics in computing, sensing, storage and cybersecurity, in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2018. pp. 125–130.
  • J. Puebla, J. Kim, K. Kondou and Y. Otani, Spintronic devices for energy-efficient data storage and energy harvesting. Commun. Mat. 1 (2020), pp. 1–9.
  • K. Wang, Y. Gu, H. Zhou, L. Zhang, C. Kang, M. Wu, W. Pan, P. Lu, Q. Gong and S. Wang, InPBi single crystals grown by molecular beam epitaxy. Sci. Rep. 4 (2014), pp. 1–6.
  • B. Dieny, I.L. Prejbeanu, K. Garello, P. Gambardella, P. Freitas, R. Lehndorff, W. Raberg, U. Ebels, S.O. Demokritov and J. Akerman, Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 3 (2020), pp. 446–459.
  • Z. Guo, J. Yin, Y. Bai, D. Zhu, K. Shi, G. Wang, K. Cao and W. Zhao, Spintronics for energy-efficient computing: An overview and outlook. Proc. IEEE (2021.
  • M. Fix, R. Schneider, S. Michaelis de Vasconcellos, R. Bratschitsch and M. Albrecht, Spin valves as magnetically switchable spintronic THz emitters. Appl. Phys. Lett. 117 (2020), pp. 132407.
  • M. Piquemal-Banci, R. Galceran, S.M.-M. Dubois, V. Zatko, M. Galbiati, F. Godel, M.-B. Martin, R.S. Weatherup, F. Petroff and A. Fert, Spin filtering by proximity effects at hybridized interfaces in spin-valves with 2D graphene barriers. Nat. Commun. 11 (2020), pp. 1–9.
  • J. Zhang, X. Chen, C. Song, J. Feng, H. Wei and J.-T. Lü, Giant tunnel magnetoresistance with a single magnetic phase-transition electrode. Phys. Rev. Appl. 9 (2018), pp. 044034.
  • J. Zhou, H. Zhou, A. Bournel and W. Zhao, Large spin Hall effect and tunneling magnetoresistance in iridium-based magnetic tunnel junctions. Sci. China Phys. Mech. Astron. 63 (2020), pp. 1–7.
  • J. Chen, Y. Sakuraba, K. Yakushiji, Y. Kurashima, N. Watanabe, J. Liu, S. Li, A. Fukushima, H. Takagi and K. Kikuchi, Fully epitaxial giant magnetoresistive devices with half-metallic Heusler alloy fabricated on poly-crystalline electrode using three-dimensional integration technology. Acta Mater. 200 (2020), pp. 1038–1045.
  • J. Torrejon, A. Solignac, C. Chopin, J. Moulin, A. Doll, E. Paul, C. Fermon and M. Pannetier-Lecoeur, Multiple giant-magnetoresistance sensors controlled by additive dipolar coupling. Phys. Rev. Appl. 13 (2020), pp. 034031.
  • S. Shreya and B.K. Kaushik, Modeling of voltage-controlled spin–orbit torque MRAM for multilevel switching application. IEEE Trans. Electron Devices 67 (2019), pp. 90–98.
  • H. Zhang, W. Kang, K. Cao, B. Wu, Y. Zhang and W. Zhao, Spintronic processing unit in spin transfer torque magnetic random access memory. IEEE Trans. Electron Devices 66 (2019), pp. 2017–2022.
  • H. Ullah and S. Khalid, Exchange interactions, half metallic ferromagnetism, mechanical, thermal and magneto-electronic properties of full Heusler alloys Co2YGe (Y =  Mn, Fe) for acoustical and spintronic devices. Phys. B 615 (2021), pp. 413060.
  • S. Ayhan and G.K. Balcı, Half-metallic ferromagnetism in Co2NiSi full-Heusler compound, in AIP Conference Proceedings, AIP Publishing LLC, 2018. pp. 020036.
  • S.A. Sofi and D.C. Gupta, High pressure-temperature study on thermodynamics, half-metallicity, transport, elastic and structural properties of Co-based Heusler alloys: a first-principles study. J. Solid State Chem. 284 (2020), pp. 121178.
  • B. Asma, F. Belkharroubi, A. Ibrahim, B. Lamia, A. Mohammed, W. Belkilali, S. Azzi and Y. Al-Douri, Structural, mechanical, magnetic, electronic, and thermal investigations of Ag2YB (Y =  Nd, Sm, Gd) full-Heusler alloys. Emerg. Mat. 4 (2021), pp. 1769–1783.
  • L. Samia, F. Belkharroubi, A. Ibrahim, B.F. Lamia, A. Saim, A. Maizia, A. Mohammed and Y. Al-Douri, Investigation of structural, elastic, electronic, and magnetic proprieties for X2LuSb (X =  Mn and Ir) full-Heusler alloys. Emerg. Mat. 5 (2022), pp. 537–551.
  • B.G. Yalcin, Ground state properties and thermoelectric behavior of Ru2VZ (Z =  Si, ge, sn) half-metallic ferromagnetic full-Heusler compounds. J. Magn. Magn. Mater. 408 (2016), pp. 137–146.
  • W. Chuang, W. Zheng, W. Feng and W. Jiang, Band structures, magnetism, half-metallicity and elastic properties of full-Heusler alloy Cr2VSb. J. Phys. Soc. Jpn. 89 (2020), pp. 064713.
  • M.K. Hussain, O.T. Hassan and A.M. Algubili, Investigations of the electronic and magnetic structures of Zr2NiZ (Z =  Ga, In, B) Heusler compounds: first principles study. J. Electron. Mater. 47 (2018), pp. 6221–6228.
  • S. Galehgirian and F. Ahmadian, First principles study on half-metallic properties of Heusler compounds Ti2VZ (Z =  Al, Ga, and In). Solid State Commun. 202 (2015), pp. 52–57.
  • B. Dieny, V.S. Speriosu, S.S. Parkin, B.A. Gurney, D.R. Wilhoit and D. Mauri, Giant magnetoresistive in soft ferromagnetic multilayers. Phys. Rev. B 43 (1991), pp. 1297.
  • J.S. Moodera, L.R. Kinder, T.M. Wong and R. Meservey, Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74 (1995), pp. 3273.
  • G. Schmidt, D. Ferrand, L. Molenkamp, A. Filip and B. Van Wees, Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62 (2000), pp. R4790.
  • G.J. Snyder and E.S. Toberer, Complex Thermoelectric Materials, in: Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from, Nature Publishing Group, World Scientific, 2011. pp. 101–110.
  • A. Maizia, F. Belkharroubi, M. Bourdim, F. Khelfaoui, S. Azzi and K. Amara, First-principles study of a half-metallic ferrimagnetic new full-Heusler Mn2OsGe alloy, in Spin, World Scientific, 2020. pp. 2050026.
  • F. Benaddi, F. Belkharroubi, N. Ramdani, M. Ameri, S. Haouari, I. Ameri, L. Drici, S. Azzi and Y. Al-Douri, Electronic and magnetic investigation of half-metallic ferrimagnetic full-Heusler Mn2IrGe. Emer. Mat. 4 (2021), pp. 1745–1760.
  • P.D. Patel, S.B. Pillai, S.M. Shinde, S.D. Gupta and P.K. Jha, Electronic, magnetic, thermoelectric and lattice dynamical properties of full heusler alloy Mn2RhSi: DFT study. Phys. B 550 (2018), pp. 376–382.
  • I. Jum’h, H. Baaziz, Z. Charifi and A. Telfah, Electronic and magnetic structure and elastic and thermal properties of Mn2-based full Heusler alloys. J. Supercond. Novel Magn. 32 (2019), pp. 3915–3926.
  • L. Fan, F. Chen, C.-m. Li, X. Hou, X. Zhu, J.-l. Luo and Z.-Q. Chen, Promising spintronics: Mn-based Heusler alloys Mn3 Ga, Mn2YGa (Y =  V, Nb, Ta), ScMnVGa. J. Magn. Magn. Mater. 497 (2020), pp. 166060.
  • B. Govind, M. Srivastava, J. Pulikkotil and D. Misra, Electronic structure and magnetic properties of a full-Heusler Mn2NiSb: Cu2MnAl type structure. J. Magn. Magn. Mater. 517 (2021), pp. 167375.
  • L. Wollmann, S. Chadov, J. Kübler and C. Felser, Magnetism in tetragonal manganese-rich Heusler compounds. Phys. Rev. B 92 (2015), pp. 064417.
  • S.V. Faleev, Y. Ferrante, J. Jeong, M.G. Samant, B. Jones and S.S. Parkin, Origin of the tetragonal ground state of Heusler compounds. Phys. Rev. Appl. 7 (2017), pp. 034022.
  • S.V. Faleev, Y. Ferrante, J. Jeong, M.G. Samant, B. Jones and S.S. Parkin, Unified explanation of chemical ordering, the Slater-Pauling rule, and half-metallicity in full Heusler compounds. Phys. Rev. B 95 (2017), pp. 045140.
  • M.K. Hussain, G. Gao and K.-L. Yao, Half-metallic properties in the new Ti2NiB Heusler alloy. J. Supercond. Novel Magn. 28 (2015), pp. 3285–3291.
  • M.K. Hussain, G. Gao and K.-L. Yao, Half-metallic properties of the new Ti2YPb (Y =  Co, Fe) heusler alloys. Int. J. Mod. Phys. B 29 (2015), pp. 1550175.
  • H. Rached, S. Bendaoudia and D. Rached, Investigation of iron-based double perovskite oxides on the magnetic phase stability, mechanical, electronic and optical properties via first-principles calculation. Mater. Chem. Phys. 193 (2017), pp. 453–469.
  • M. Elahmar, H. Rached, D. Rached, S. Benalia, R. Khenata, Z. Biskri and S.B. Omran, Structural stability, electronic structure and magnetic properties of the new hypothetical half-metallic ferromagnetic full-Heusler alloy CoNiMnSi. Mat. Sci. Poland 34 (2016), pp. 85–93.
  • M. Benkabou, H. Rached, A. Abdellaoui, D. Rached, R. Khenata, M. Elahmar, B. Abidri, N. Benkhettou and S. Bin-Omran, Electronic structure and magnetic properties of quaternary Heusler alloys CoRhMnZ (Z =  Al, Ga, Ge and Si) via first-principle calculations. J. Alloys Compd. 647 (2015), pp. 276–286.
  • M. Elahmar, H. Rached, D. Rached, R. Khenata, G. Murtaza, S.B. Omran and W. Ahmed, Structural, mechanical, electronic and magnetic properties of a new series of quaternary Heusler alloys CoFeMnZ (Z =  Si, As, Sb): a first-principle study. J. Magn. Magn. Mater. 393 (2015), pp. 165–174.
  • H. Rached, D. Rached, R. Khenata, B. Abidri, M. Rabah, N. Benkhettou and S.B. Omran, A first principle study of phase stability, electronic structure and magnetic properties for Co2− xCrxMnAl Heusler alloys. J. Magn. Magn. Mater. 379 (2015), pp. 84–89.
  • P. Blaha, K. Schwarz, P. Sorantin and S. Trickey, Full-potential, linearized augmented plane wave programs for crystalline systems. Comput. Phys. Commun. 59 (1990), pp. 399–415.
  • P. Blaha, K. Schwarz, G.K. Madsen, D. Kvasnicka and J. Luitz, Wien2k. An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties 60 (2001).
  • J.P. Perdew, K. Burke and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77 (1996), pp. 3865.
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13 (1976), pp. 5188.
  • B. Fadila, M. Ameri, D. Bensaid, M. Noureddine, I. Ameri, S. Mesbah and Y. Al-Douri, Structural, magnetic, electronic and mechanical properties of full-Heusler alloys Co2YAl (Y =  Fe, Ti): first principles calculations with different exchange-correlation potentials. J. Magn. Magn. Mater. 448 (2018), pp. 208–220.
  • F. Belkharroubi, F. Khelfaoui, K. Amara, N. Marbouh, M. Ameri and Y.S. Abderrahmane, Robust half metallicity state with the hydrostatic and tetragonal distortion for a new quaternary Heusler ZrTiRhGa: FP-LAPW calculations. Phys. B 557 (2019), pp. 56–62.
  • S. Yousuf and D. Gupta, Insight into electronic, mechanical and transport properties of quaternary CoVTiAl: spin-polarized DFT+ U approach. Mat. Sci. Eng: B 221 (2017), pp. 73–79.
  • Y. Guermit, M. Drief, T. Lantri, A. Tagrerout, H. Rached, N.-e. Benkhettou and D. Rached, Theoretical investigation of magnetic, electronic, thermoelectric and thermodynamic properties of Fe2TaZ (Z =  B, In) compounds by GGA and GGA+ U approaches. Comput Condens. Mat. 22 (2020), pp. e00438.
  • S.L. Dudarev, G.A. Botton, S.Y. Savrasov, C. Humphreys and A.P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 57 (1998), pp. 1505.
  • M. Ram, A. Saxena, A.E. Aly and A. Shankar, Half-metallicity in new Heusler alloys Mn 2 ScZ (Z =  Si, Ge, Sn). RSC Adv. 10 (2020), pp. 7661–7670.
  • M. Ayad, F. Belkharroubi, F. Boufadi, M. Khorsi, M. Zoubir, M. Ameri, I. Ameri, Y. Al-Douri, K. Bidai and D. Bensaid, First-principles calculations to investigate magnetic and thermodynamic properties of new multifunctional full-Heusler alloy Co2TaGa. Indian J. Phys. 94 (2020), pp. 767–777.
  • V. Ashwin, M.B. Ahamed and S.B. Elavarasi, Structural, electronic, magnetic and half-metallic properties of cubic perovskites NaBeO3 and KBeO3 using PBE-GGA and TB-mBJ approach: A DFT perspective. Appl. Phys. A 126 (2020), pp. 1–11.
  • A. Beloufa, B. Bakhti, D. Bouguenna and M.R. Chellali, Computational investigation of CrFeZ [Z =  Si, Sn and Ge] half-Heusler compounds ferromagnets. Phys. B 563 (2019), pp. 50–55.
  • F.D. Murnaghan, The compressibility of media under extreme pressures. Proc. Natl. Acad. Sci. U.S.A. 30 (1944), pp. 244–247.
  • D. Bensaid, T. Hellal, M. Ameri, Y. Azzaz, B. Doumi, Y. Al-Douri, B. Abderrahim and F. Benzoudji, First-principle investigation of structural, electronic and magnetic properties in Mn2RhZ (Z =  Si, Ge, and Sn) heusler alloys. J. Supercond. Novel Magn. 29 (2016), pp. 1843–1850.
  • V. Alijani, O. Meshcheriakova, J. Winterlik, G. Kreiner, G.H. Fecher and C. Felser, Increasing curie temperature in tetragonal Mn2RhSn Heusler compound through substitution of Rh by Co and Mn by Rh. J. Appl. Phys. 113 (2013), pp. 063904.
  • A. Saim, F. Belkharroubi, F. Boufadi, I. Ameri, L. Blaha, A. Tebboune, M. Belkaid, W. Belkilali, M. Ameri and Y. Al-Douri, Investigation of the structural, elastic, electronic, and optical properties of half-Heusler CaMgZ (Z =  C, Si, Ge, Sn, Pb) compounds. J. Electron. Mater. 51 (2022), pp. 4014–4028.
  • W. Belkilali, F. Belkharroubi, M. Ameri, N. Ramdani, F. Boudahri, F. Khelfaoui, K. Amara, S. Azzi, L. Drici and I. Ameri, Theoretical investigations of structural, mechanical, electronic and optical properties of NaScSi alloy. Emerg. Mat. 4 (2021), pp. 1465–1477.
  • S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl and C. Wolverton, The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mat. 1 (2015), pp. 1–15.
  • J.E. Saal, S. Kirklin, M. Aykol, B. Meredig and C. Wolverton, Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). Jom 65 (2013), pp. 1501–1509.
  • A. Belsky, M. Hellenbrandt, V.L. Karen and P. Luksch, New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta. Crystallogr. B 58 (2002), pp. 364–369.
  • J. Ma, J. He, D. Mazumdar, K. Munira, S. Keshavarz, T. Lovorn, C. Wolverton, A.W. Ghosh and W.H. Butler, Computational investigation of inverse Heusler compounds for spintronics applications. Phys, Rev. B 98 (2018), pp. 094410.
  • M.J. Mehl, Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Phys. Rev. B 47 (1993), pp. 2493.
  • D.C. Wallace, Thermodynamics of crystals. Am. J. Phys. 40 (1972), pp. 1718–1719.
  • M. Born, On the stability of crystal lattices. I, in Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 1940. pp. 160–172.
  • M. Born, K. Huang and M. Lax, Dynamical theory of crystal lattices. Am. J. Phys. 23 (1955), pp. 474–474.
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A. 65 (1952), pp. 349.
  • W. Voigt, Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Ann. Phys. 274 (1889), pp. 573–587.
  • A. Reuss, Berechung der Fliessgrenze von Mischkristallen [Calculation of yield strength in mixed crystals]. ZAMM-Zeitschrift für Angewandte Mathematik und Mechanik 9 (1929), pp. 49–58.
  • Y. Pan, S.-L. Wang and C.-M. Zhang, Ab-initio investigation of structure and mechanical properties of PtAlTM ternary alloy. Vacuum 151 (2018), pp. 205–208.
  • L. Hao, R. Khenata, X. Wang and T. Yang, Ab initio study of the structural, electronic, magnetic, mechanical and thermodynamic properties of full-Heusler Mn2CoGa. J. Electron. Mater. 48 (2019), pp. 6222–6230.
  • M. Friák, M. Šob|| and V. Vitek, Ab initio calculation of tensile strength in iron. Philos. Mag. 83 (2003), pp. 3529–3537.
  • H. Fu, D. Li, F. Peng, T. Gao and X. Cheng, Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures. Comput. Mater. Sci. 44 (2008), pp. 774–778.
  • M.K. Butt, M. Yaseen, I.A. Bhatti, J. Iqbal, A. Murtaza, M. Iqbal, M. mana AL-Anazy, M. Alhossainy and A. Laref, A DFT study of structural, magnetic, elastic and optoelectronic properties of lanthanide based XAlO3 (X =  Nd, Gd) compounds. J. Mat. Res. Technol. 9 (2020), pp. 16488–16496.
  • M.W. Qureshi, X. Ma, G. Tang and R. Paudel, Structural stability, electronic, mechanical, phonon, and thermodynamic properties of the M2GaC (M =  Zr, Hf) max phase: an AB initio calculation. Materials 13 (2020), pp. 5148.
  • S.U. Zaman, N. Rahman, M. Arif, M. Saqib, M. Husain, E. Bonyah, Z. Shah, S. Zulfiqar and A. Khan, Ab initio investigation of the physical properties of Tl based chloroperovskites TlXCl3 (X =  Ca and Cd). AIP. Adv. 11 (2021), pp. 015204.
  • C. Wu, W. Zheng, N. Si, W. Feng, F. Zhang and W. Jiang, The structural, half-metal, magnetic, and mechanical properties of full heusler alloy CrCoVSb: a first-principles study. Chin. J. Phys. 66 (2020), pp. 436–443.
  • L. Pauling, The nature of the interatomic forces in metals. Phys. Rev. 54 (1938), pp. 899.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.