91
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Influence of substrate type on deformation specificity of soft film/hard substrate coated systems under nanomicroindentation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1146-1176 | Received 18 Jun 2022, Accepted 05 Dec 2022, Published online: 17 Mar 2023

References

  • A.A. Volinsky and W.W. Gerberich, Microelectronic Eng. 69 (2003), pp. 519–527. doi:10.1016/S0167-9317(03)00341-1.
  • T. David Read and A.A. Volinsky, Thin films for microelectronics and photonics : physics, mechanics, characterization, and reliability. Handbook 50201 (2007), pp. 135–180.
  • T.Y. Tsui, W.C. Oliver and G.M. Pharr, Nanoindentation of soft films on hard substrates:The importance of pile-Up. MRS Proceedings 436 (1996), pp. 207–212.
  • S. Chen, L. Liu and T. Wang, Investigation of the mechanical properties of thin films by nanoindentation, considering the effects of thickness and different coating–substrate combinations. Surf. Coat. Technol. 191 (2005), pp. 25–32. doi:10.1016/j.surfcoat.2004.03.037.
  • A.A. Pelegri and X. Huang, Nanoindentation on soft film/hard substrate and hard film/soft substrate material systems with finite element analysis. Compos. Sci. Technol. 68(1) (2008), pp. 147–155. doi:10.1016/j.compscitech.2007.05.033.
  • J. Lamovec, V. Jovic, I. Mladenovic, D. Stojanivic, A. Kojovic and V. Radojevic, Indentation behaviour of 'soft film on hard substrate' composite system type. Zastita Materijala 56(3) (2015), pp. 269–277. doi:10.5937/ZasMat1503269L.
  • J. Yang, Y. Huang and K. Xu, Effect of substrate on surface morphology evolution of Cu thin films deposited by magnetron sputtering. Surf. Coat. Technol. 201 (2007), pp. 5574–5577. doi:10.1016/j.surfcoat.2006.07.227.
  • T.Y. Tsui, C.A. Ross and G.M. Pharr. Nanoindentation hardness of soft films on hard substrates: effects of the substrate. Symposium J- Materials Reliability in Microelectronics VII, (1997), 57. http://doi.org/10.1557/PROC-473-57.
  • T.Y. Tsui, C.A. Ross and G.M. Pharr, A method for making substrate-independent hardness measurements of soft metallic films on hard substrates by nanoindentation. J. Mater. Res. 18(6) (2003), pp. 1383–1391. doi:https://doi.org/10.1557/JMR.2003.0190.
  • S. Suresh, T.-G. Nieh and B.W. Choi, Nanoindentation of copper thin films on silicon substrates. Scr. Mater. 41(9) (1999), pp. 951–957.
  • Y. Zhou, et al., Measurement of young's modulus and residual stress of copper film electroplated on silicon wafer. Thin Solid Films 460(1) (2004), pp. 175–180.
  • Y.I. Golovin, Nanoindentation as a means of comprehensive assessment of the physical and mechanical properties of materials in submicrovolumes. Factory Laboratory. Mater. Diagnostics 75(1) (2009), pp. 45–59. (in Rus.).
  • A.M. Korsunsky, et al., On the hardness of coated systems. Surf. Coat. Technol. 99 (1998), pp. 171–183.
  • A.M. Korsunsky and A. Constantinescu, Work of indentation approach to the analysis of hardness and modulus of thin coatings. MSE A 423 (2006), pp. 28–35.
  • A.R. Shugurov, A.V. Panin and K.V. Oskomov, Specific features of the determination of the mechanical characteristics of thin films by the nanoindentation technique. Phys. Solid State 50(6) (2008), pp. 1050–1055.
  • T.Y. Tsui and G.M. Pharr, Substrate effects on nanoindentation mechanical property measurement of soft films on hard substrates. J. Mater. Res. 14(1) (1999), pp. 292–301.
  • D. Beegan and M.T. Laugier, Application of composite hardness models to copper thin film hardness measurement. Surf. Coat. Technol. 199(1) (2005), pp. 32–37.
  • R. Saha and W.D. Nix, Effects of the substrate on the determination of thin film mechanical properties by nanoindentation. Acta Mater. 50 (2002), pp. 23–38.
  • A.S. Kaygorodov and A.S. Mamaev, Substrate influence on the mechanical properties of TiC/a-C coatings. Materials Phys. And Mechanics 30 (2017), pp. 35–39.
  • M. Gonzalez, K. Vanstreels and A. Urbanowicz. Modeling the substrate effects on nanoindentation mechanical property measurement. EuroSimE (2009), Book of 10 Int. Conference. doi:10.1109/ESIME.2009.4938456.
  • G.M. Pharr, A. Bolshakov, T.Y. Tsui and J.C. Hay, Nanoindentation of soft films On hard substrates: experiments And finite element simulations. MRS Proceedings 505 (1997), pp. 109). doi:https://doi.org/10.1557/PROC-505-109.
  • J. Chen, J. Shi, Z. Chen, M. Zhang, W. Peng and L. Fang, Mechanical properties and deformation behaviors of surface-modified silicon: a molecular dynamics study. J. Mat. Sci. 54(4) (2019), pp. 3096–3110.
  • J. Chen, J. Shi, Y. Wang, J. Sun, J. Han, K. Sun and L. Fang, Nanoindentation and deformation behaviors of silicon covered with amorphous SiO2: a molecular dynamic study. RSC 8 (2018), pp. 12597–12607. doi:10.1039/c7ral.3638b.
  • J.T.M. De Hosson, W.A. Soer, A.M. Minor, Z. Shan, E.A. Stach, S.A.S.A.S. Asif and O.L. Warren, In situ TEM nanoindentation and dislocation-grain boundary interactions: a tribute to david brandon. J. Mater. Sci. 41 (2006), pp. 7704–7719. doi:10.1007/s10853-006-0472-2.
  • W.W. Gerberich, D.E. Kramer, N.I. Tymiak, A.A. Volinsky, D.F. Bahr and M.D. Kriese, Nanoindentation-induced defect-interface interactions: phenomena, methods and limitations. Acta Mater. 47(15) (1999), pp. 4115–4123. doi:10.1016/S1359-6454(99)00270-0.
  • D.Z. Grabko and K.M. Pyrtsak. Response of the Cu/LiF structure to the introduction of a Vickers indenter. Proc. of the 48th Intern. Conference “Actual Problems of Strength”, Tolyatti, Russia, (2009), 195-197. (in Rus.).
  • D.Z. Grabko, K.M. Pyrtsak and O.A. Shikimaka, Response of the crystal-substrate of the Cu/MgO composite structure to the action of local loads. Deformation Destruction Mater. 2 (2011), pp. 40–46. (in Rus.).
  • D.Z. Grabco, C.M. Pyrtsac, L.Z. Ghimpu and G.F. Volodina, Mechanical properties of the coating/substrate composite system: nanostructured copper films on a LiF substrate. Surf. Eng. Appl. Electrochem. 52(4) (2016), pp. 319–333. doi:10.3103/S1068375516040074.
  • D. Grabco, Dislocation-disclination mechanism of deformation under microindentation. Mold. J. Phys. Sci 3 (2002), pp. 94–103.
  • D. Grabco, O. Shikimaka and E. Harea, Translation–rotation plasticity as basic mechanism of plastic deformation in macro-, micro- and nanoindentation processes. J. Phys. D Appl. Phys 41 (2008), pp. 074016 (9pp). doi:10.1088/0022-3727/41/7/074016.
  • I. Zarudi, J. Zou and L.C. Zhang, Microstructures of phases in indented silicon: A high resolution characterization. Appl. Phys. Lett. 82(6) (2003), pp. 874–876.
  • J.-i. Jang, M.J. Lance, S. Wen, T.Y. Tsui and G.M. Pharr, Indentation-induced phase transformations in silicon: influences of load, rate and indenter angle on the transformation behavior. Acta Mater. 53 (2005), pp. 1759–1770. doi:10.1016/j.actamat.2004.12.025.
  • E. Harea. Deformation of planar structures of TCO / Si type under the action of concentrated load. Doctoral thesis in physical and mathematical sciences. Chisinau, 2011, 127 p. (in Rom.).
  • Y.S. Boyarskaya, D.Z. Grabko and M.S. Kats. Physics of microindentation processes. Chisinau, “Shtiintsa”, 1986, 294 с. (in Rus.).
  • V.I. Alshits and V.L. Indenbom, Dynamic deceleration of dislocations. In the book “Dynamics of dislocations”, Naukova Dumka, Kyiv, 1975, pp. 232–275. (in Rus.).
  • W.C. Oliver and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6) (1992), pp. 1564–1583. doi:10.1557/JMR.1992.1564.
  • D. Beegan, S. Chowdhury and M.T. Laugier, The nanoindentation behaviour of hard and soft films on silicon substrates. Thin Solid Films 466 (2004), pp. 167–174.
  • Y.I. Golovin, Introduction to Nanotechnology, Mashinostroenie, Moscow, 2007. 496 p. (in Rus.).
  • Y.I. Golovin, V.M. Vasyukov, V.V. Korenkov, R.A. Stolyarov, A.V. Shuklinov and L.E. Polyakov, Size effects in the hardness of fcc metals in the micro- and nanoscale region. J. Tech. Phys. 81(5) (2011), pp. с55–с58. (in Rus).
  • D. Grabco, O. Shikimaka, C. Pyrtsac, Z. Barbos, M. Popa, A. Prisacaru, D. Vilotic, M. Vilotic and S. Alexandrov, Nano- and micromechanical parameters of AISI 316L steel. Surf. Eng. Appl. Electr. 56(6) (2020), pp. 719–726. doi:10.3103/S1068375520060071.
  • D.M. Hausmann and R.G. Gordon, Surface morphology and crystallinity control in the atomic layer deposition (ALD) of hafnium and zirconium oxide thin films. J. Crystal Growth 249 (2003), pp. 251–261.
  • J.A. Venables and G.D.T. Spiller, Nucleation and growth of thin films, in Surface Mobilities on Solid Materials, V.T. Binh, New York, 1983. pp. 341–404.
  • J.A. Venables, G.D.T. Spiller and M. Hanbucken, Nucleation and growth of thin films. Rep. Prog. Phys. 47 (1984), pp. 399–459.
  • A.M. Ovrutsky, A.S. Prokhoda and M.S. Rasshchupkyna, The surface processes during Crystallization. Comput. Mater. Sci. (2014), pp. 187–243.
  • Y. Champion, C. Langlois, S. Guerin-Mailly, F. Langlois, J.-L. Bonnentien and M. Hytch, Near-perfect elastoplasticity in pure nanocrystalline copper. Science 300 (2003), pp. 310–311. doi:10.1126/science.1081042.
  • R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Mater. 3(8) (2004), pp. 511–516. doi:10.1038/nmat1180.
  • T.N. Xu, N. Hirosaki, R.J. Xie, Y. Yamamoto Y and H. Tanaka, Superplastic deformation of nano-size S3N4 ceramics with different amounts of sintering additives. Scripta Mater. 55 (2006), pp. 215–217. doi:10.1016/j.scriptamat.2006.04.020.
  • I.A. Ovid'ko and A.G. Sheinerman, Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl. Phys. Lett. 90 (2007), pp. 171927. doi:10.1063/1.2734393.
  • I.A. Ovid'ko and A.G. Sheinerman, Interaction of intergrain sliding, lattice slip and grain boundary diffusion in nanocrystalline ceramics and metals. Mater. Phys. Mech. 14(1) (2012), pp. 87–100.
  • W.A. Soer, J.T.M. De Hosson, A.M. Minor, J.W. Morris Jr and E.A. Stach, Effects of solute Mg on grain boundary and dislocation dynamics during nanoindentation of Al–Mg thin films. Acta Mater. 52 (2004), pp. 5783–5790. doi:10.1016/j.actamat.2004.08.032.
  • D. Grabco, B. Pushcash, M. Dyntu and O. Shikimaka, Thermal evolution of deformation zones around microindentations in different types of crystal. Phil. Mag. A 82(10) (2002), pp. 2207–2215. doi:10.1080/01418610208235731.
  • H. Saka, A. Shimatani, M. Suganuma, et al., Transmission electron microscopy of amorphization and phase transformation beneath indents in Si. Phil. Mag. A 82(10) (2002), pp. 1971–1981.
  • A.B. Mann, D. Van Heerden, J.B. Pethica, et al., Contact resistance and phase transformations during nanoindentation of silicon. Phil. Mag. A 82(10) (2002), pp. 1921–1929.
  • Y.B. Xu, Z.C. Li and Y.Q. Wu, Deformation structure induced by indentation in GaAs and Si single crystals. J. Metallurgical Eng. 3(1) (2014), pp. 13–28. doi:10.14355/me.2014.0301.03.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.