70
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Static investigation of martensitic nucleation criticality in an atomistic model material

, &
Pages 1247-1278 | Received 15 Jul 2022, Accepted 17 Mar 2023, Published online: 20 Apr 2023

References

  • G. Krauss, Tempering of lath martensite in low and medium carbon steels: Assessment and challenges, Steel Res. Int. 88(10) (2017), pp. 1700038.
  • K. Sugimoto, Isothermal mode of the martensitic transformation, Trans. AIME. 4 (1952), pp. 489–500.
  • M. Huang, L. Liu, and B. He, The role of transformation induced plasticity in the development of advanced high strength steels, Adv. Eng. Mater. 20 (2018), pp. 1701083.
  • L.R.F. Rose and P.M. Kelly, Martensitic transformation in ceramics- its role in transformation toughening, Prog. Mater. Sci 47(5) (2002), pp. 463–557.
  • C.M. Wayman and K. Otsuka, Shape Memory Materials, Cambridge University Press, 1998.
  • X. Ren and K. Otsaka, Physical metallurgy of ti-ni based shape memory alloys, Prog. Mater. Sci. 50(5) (2005), pp. 511–678.
  • E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals, Cambridge University Press, 1991.
  • C.M. Wayman, Introduction to the Crystallography of Martensitic Transformation, Macmillan, 1964.
  • Z. Nishiyama, Martensitic Transformation, Academic Press, 1978.
  • A.L. Roitburd and G.B. Olson, Martensitic nucleation, in Martensite: A Tribute to Morris Cohen, American Society for Metals, 1992, pp. 149-174.
  • A. Planes and L. Mãnosa, Vibrational properties of shape-memory alloys, J. Phys. C Solid State Phys. 55 (2001), pp. 159–267.
  • O. Kastner and R.Z. Shneck, On the entropic nucleation barrier in a martensitic transformation, Philos. Mag. 95(12) (2015), pp. 1282–1308.
  • D. Turnbull and R.E. Cech, Heterogeneous nucleation of the martensitic transformation, Trans. AIME 206 (1956), pp. 124–132.
  • H. Xu and S. Tan, Observations on a cualni single crystal, Contin. Mech. Thermodyn. 2(4) (1990), pp. 241–244.
  • W. Kai, C. Chen, C.L. Lai, and L.W. Tsay, Notched tensile tests of cold rolled 304 stainless steel in 40pc MGCL2 solution, Corros. Sci. 51(2) (2009), pp. 380–386.
  • M. Cohen and E.S. Machlin, Isothermal mode of the martensitic transformation, Trans. AIME 4 (1952), pp. 489–500.
  • L. Kaufman and M. Cohen, Thermodynamics and kinetics of martensitic transformations, Prog. Met. Phys. 7 (1958), pp. 165–246.
  • P. Gobin and G. Gunin, A localized soft mode model for the nucleation of thermoelastic martensitic transformation: Application to the 9R transformation, Metall. Trans. A 13(7) (1982), pp. 1127–1134.‘
  • M.P. Kashchenko, The wave model of martensite growth for the transformation of iron based alloys, Ekaterinburg, 2005.
  • N.M. Kashchenko, M.P. Kashchenko, and V.G. Chashchina, Dynamic model of spatial scaling of the initial excited state upon reconstructive martensitic transformations, Phys. Met. Metallogr. 122 (2021), pp. 834–840.
  • R. Cowley, Structural phase transitions i. landau theory, Adv. Phys. 29(1) (1980), pp. 1–110.
  • A.D. Bruce, Structural phase transitions ii. static critical behavior, Adv. Phys. 29(1) (1980), pp. 111–217.
  • A.D. Bruce and R. Cowley, Structural phase transitions iii. critical dynamics and quasi elasticscattering, Adv. Phys. 29 (1980), pp. 218–323.
  • J. Perkins, Phonon nucleation of lattice transformation in solids, Script. Metal. 8(1) (1973), pp. 31–34.
  • T.C.A. Lucas, H.A. Hriljac, A.L.M. Goodwin, M.S. Senn, and D.A. Keen, Emergence of long-range order in BaTiO3 from local symmetry-breaking distortions, Phys. Rev. Lett. 116(20) (2016), pp. 207602.
  • E.K.H. Salje and A. Putnis, Tweed microstructures: Experimental observations and some theoretical models, Phase Transit. 48(1-3) (1994), pp. 85–105.
  • G. Venkataraman, Soft modes and structural phase transitions, Bull. Mater. Sci. 1(3-4) (1979), pp. 129–170.
  • Y. Murakami, N. Nakanishi, and A. Nagasawa, Lattice stability and soft modes, J. Phys. Colloq. 43(C4) (1982), pp. C4-335–C4-340.
  • J. Trampenau, M. Alba, C. Herzig, H.R. Schober, G. Vogl, W. Petry, and A. Heiming, Phonon dispersion of the bcc phase of group-iv metals. I. bcc titanium, Phys. Rev. B. 43(13) (1991), pp. 10963–10969.
  • A.G. Khachaturyan and Y. Wang, Three dimensional field model and computer modeling of martensitic transformations, Acta. Mater. 45(2) (1997), pp. 759–773.
  • A. Artemev, A.G. Khachaturyan, and Y.M. Jin, Three dimensional phase field model of low symmetry martensitic transformation in polycrystal: Simulation of martensite in aucd alloys, Acta. Mater. 49(7) (2001), pp. 1165–1177.
  • I. Ghamarian, V.I. Levitas, and S.E. Esfahani, Scale-free modeling of coupled evolution of discrete dislocation bands and multivariant martensitic microstructure, PRL 121(20) (2018), pp. 205701.
  • D.W. Lee, V.I. Levitas, and D.L. Preston, Three-dimensional landau theory for multivariant stress-induced martensitic phase transformations. III. Alternative potentials, critical nuclei, kink solutions, and dislocation theory, Phys. Rev. B 86 (2003), pp. 134201.
  • B.J. Thijsse and A.S.J. Suiker, Nucleation, kinetics and morphology of displacive phase transformations in iron, J. Mech. Phys. Solids 61(11) (2013), pp. 2273–2301.
  • O. Kastner, First Principles Modelling of Shape Memory Alloys, volume 163 of Springer Series in Materials Science, Springer, 2012.
  • O. Kastner, G. Eggeler, W. Weiss, and G.J. Ackland, Molecular dynamics simulation study of microstructure evolution during cyclic martensitic transformations, JMPS 9 (2011), pp. 1888–1908.
  • W. Thomson, On the equilibrium of vapour at a curved surface of liquid. P. Roy. Soc. Edinb. A 7 (1872), pp. 63–68.
  • O. Kastner, Molecular dynamics of a 2D model of the shape memory effect. Part I: Model and simulations, Contin. Mech. Therm. 15(5) (2003), pp. 487–502.
  • O. Kastner, Molecular dynamics of a 2D model of the shape memory effect, part II: Thermodynamics of a small system, Contin. Mech. Therm. 18(1-2) (2006), pp. 63–81.
  • E. A. Jagla and M. F. Laguna, Classical isotropic two body potentials generating martensitic transformations. J. Stat. Mech. Theory Exp 2009 (2009), pp. P09002.
  • J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. London A 241(1226) (1957), pp. 376–396.
  • J.D. Eshelby, Elastic inclusions and inhomogeneities, Progress in Solid Mechanics, I. Sneddon and R. Hill, eds., Vol. 2, pp. 81–140, 1961.
  • I. Müller, Thermodynamics, Pitman Advanced Publishing Program. Pitman, Boston, 1985.
  • R. Alexander, M.-C. Marinica, L. Proville, F. Willaime, K. Arakawa, M.R. Gilbert, and S.L. Dudarev, Ab initio scaling laws for the formation energy of nanosized interstitial defect clusters in iron, tungsten, and vanadium, Phys. Rev. B. 94(2) (2016), pp. 024103.
  • D. Vizoso, C. Deo, and R. Dingreville, Scaling laws and stability of nano-sized defect clusters in niobium via atomistic simulations and statistical analysis, J. Mater. Sci. 54(22) (2019), pp. 14002–14028.
  • T.D. de la Rubia and N. Soneda, Defect production, annealing kinetics and damage evolution in -Fe: An atomic-scale computer simulation, Philos. Mag. A 78(5) (1998), pp. 995–1019.
  • H.A. van der Vorst and Y. Saad, Iterative solution of linear systems in the 20th century, J. Comput. Appl. Math. 123(1-2) (2000), pp. 1–33. Numerical Analysis. Vol. III: Linear Algebra.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.