56
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Multiferroic and half-metallic character of hexagonal BaTi0.5Fe0.5O3: DFT based calculation

, ORCID Icon &
Pages 1279-1292 | Received 29 Jun 2022, Accepted 28 Mar 2023, Published online: 14 Apr 2023

References

  • J. Ma, J. Hu, Z. Li, and C.W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23 (2011), pp. 1062–1087.
  • S. Wohlrab, H. Du, M. Weiss, and S. Kaskel, Foam-derived multiferroic BiFeO3 nanoparticles and integration into transparent polymer nanocomposites. J. Exp. Nanosci. 3 (2008), pp. 1–15.
  • K. Mukhopadhyay, S. Sutradhar, S. Modak, S.K. Roy, and P.K. Chakrabarti, Enhanced magnetic behavior of chemically prepared multiferroic nanoparticles of GaFeO3 in (GaFeO3)0.50(Ni0.4Zn0.4Cu0.2Fe2O4)0.5 nanocomposite. J. Phys. Chem. C 116 (2012), pp. 4948–4956.
  • J. Jin, F. Zhao, K. Han, M.A. Haque, L. Dong, and Q. Wang, Multiferroic polymer laminate composites exhibiting high magnetoelectric response induced by hydrogen-bonding interactions. Adv. Funct. Mater. 24 (2014), pp. 1067–1073.
  • H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162 (1994), pp. 317–338.
  • M.M. Vopson, Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40(4) (2015), pp. 223–250.
  • K. Daniel I, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306(1) (2006), pp. 1–8.
  • K.W. Kirby and B.A. Wechsler, Phase relations in the barium titanate titanium oxide system. J. Am. Ceram. Soc. 74(8) (1991), pp. 1841–1847.
  • G.M. Keith, M.J. Rampling, K. Sarma, N. Mc.Alford, and D.C. Sinclair, Synthesis and characterisation of doped 6H-BaTiO3 ceramics. J. Eur. Ceram. Soc. 24(6) (2004), pp. 1721–1724.
  • H.T. Langhammer, T. Muller, K.H. Felgner and H.P. Abicht, Crystal structure and related properties of manganese-doped barium titanate ceramics. J. Am. Ceram. Soc. 83(3) (2000), pp. 605–611.
  • H.T. Langhammer, T. Müller, R. Böttcher, and H.P. Abicht, Structural and optical properties of chromium-doped hexagonal barium titanate ceramics. J. Phys. Condens. Matter. 20(8) (2008), p. 085206.
  • R. Böttcher, H.T. Langhammer, T. Müller and H.P. Abicht, 3C–6H phase transition in BaTiO3 induced by Fe ions: an electron paramagnetic resonance study. J. Phys. Condens. Matter. 20(50) (2008), p. 505209.
  • S. Jayanthi and T.R.N. Kutty, Dielectric properties of 3d transition metal substituted BaTiO3 ceramics containing the hexagonal phase formation. J. Mater. Sci. Mater. Electron. 19(7) (2008), pp. 615–626.
  • R. Böttcher, H.T. Langhammer, and T. Müller, Paramagnetic resonance study of nickel ions in hexagonal barium titanate. J. Phys. Condens. Matter. 23(11) (2011), p. 115903.
  • W.A. Adeagbo, et al., Theoretical investigation of iron incorporation in hexagonal barium titanate. Phys. Rev. B 100(18) (2019), p. 184108.
  • A. Filippetti and N.A. Hill, Coexistence of magnetism and ferroelectricity in perovskites. Phys. Rev. B 65(19) (2002), p. 195120.
  • D. Singh, A. Dixit, and P.S. Dobal, Ferroelectricity and ferromagnetism in Fe-doped barium titanate ceramics. Ferroelectrics 573(1) (2021), pp. 63–75.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett 77 (1996), p. 3865.
  • K. Schwarz and P. Blaha, Solid state calculations using WIEN2k. Comput. Mater. Sci. 28 (2003), p. 259e273.
  • L. Wang, T. Maxisch, and G. Ceder, Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 73(19) (2006), p. 195107.
  • A.A. Emery and C. Wolverton, High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites. Sci. Data 4(1) (2017), pp. 1–10.
  • S. Kirklin, J.E. Saal, B. Meredig, A. Thompson, J.W. Doak, M. Aykol, S. Rühl, and C. Wolverton, The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. npj Comput. Mater. 1(1) (2015), pp. 1–15.
  • R.D. King-Smith and D. Vanderbilt, Theory of polarization of crystalline solids. Phys. Rev. B 47(3) (1993), p. 1651.
  • R. Resta, Polarization as a berry phase. Europhys. News 28(1) (1997), pp. 18–20.
  • P. Wedepohl, Comparison of a simple two-parameter equation of state with the Murnaghan equation. Solid State Commun. 10 (1972), p. 947e951.
  • M. Born, On the stability of crystal lattices. I., in Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press, 1940. pp. 160–172.
  • R. Hill, The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. London, Sect. A 65(5) (1952), p. 349.
  • S.F.X.C.I.I. Pugh, Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. London Edinb Dublin Philos. Mag. J. Sci. 45(367) (1954), pp. 823–843.
  • J. Haines, J.M. Leger, and G. Bocquillon, Synthesis and design of superhard materials. Annu. Rev. Mater. Res. 31 (2001), p. 1.
  • Y. Akishige, M. Kobayashi, H. Takahashi, N. Mōri, and E. Sawaguchi, Lattice strain of hexagonal BaTiO3 under hydrostatic pressures. Ferroelectrics 88(1) (1988), pp. 89–92.
  • J. Akimoto, Y. Gotoh, and Y. Oosawa, Refinement of hexagonal BaTiO3. Acta Crystallogr. C 50, (p.160-161) (1994).
  • S.K. Nayak, et al., Chromium point defects in hexagonal BaTiO3: A comparative study of first-principles calculations and experiments. Phys. Rev. B 91(15) (2015), p. 155105.
  • T.A. Colson, M.J. Spencer, and I. Yarovsky, A DFT study of the perovskite and hexagonal phases of BaTiO3. Comput. Mater. Sci. 34(2) (2005), pp. 157–165.
  • O. Eibl, P. Pongratz, P. Skalicky, and H. Schmelz, Extended defects in hexagonal BaTiO3. Philos. Mag. A 60(5) (1989), pp. 601–612.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.