145
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Diamagnetic susceptibility of an artificial hydrogen molecule ion DD2+ confined to quantum dots: effects of anisotropy

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1293-1309 | Received 19 Sep 2022, Accepted 28 Mar 2023, Published online: 20 Apr 2023

References

  • M. Barseghyan, A. Manaselyan, A.A. Kirakosyan, L.M. Perez, and D. Laroze, Effective tuning of isotropic and anisotropic properties of quantum dots and rings by external fields, Nanostructures 117 (2020), pp. 113807.
  • Y. Huang, H. Zang, J.-S. Chen, E.A. Sutter, P.W. Sutter, C.-Y. Nam, and M. Cotlet, Hybrid quantum dot-tin disulfide field-effect, Appl. Phys. Lett. 108(12) (2016), pp. 123502.
  • N. Hildebrandt, C.M. Spillmann, W. Russ Algar, T. Pons, M.H. Stewart, E. Oh, K. Susumu, S.A. Diaz, J.B. Delehanty, and I.L. Medintz, Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications, Chem. Rev.117(2) (2017), pp. 536–711.
  • D. Ghosh, S.A. Ivanov, and S. Tretiak, Structural dynamics and electronic properties of semiconductor quantum dots: computational insights, Chem. Mater. 33 (2021), pp. 7848–7857.
  • D. Bejan, Impurity-related nonlinear optical rectification in double quantum dot under electric field, Phys. Lett. A 380 (2016), pp. 3836–3842.
  • P. Saini and A. Chatterjee, Confnement shape effect on D-0 impurity in a GaAs quantum dot with spin-orbit coupling in a magnetic field, Superlattices Microstruct. 146 (2020), pp. 106641.
  • S. Pal, M. Ghosh, and C.A. Duque, Impurity related optical properties in tuned quantum dot/ring systems, Phil. Mag. 99 (2019), pp. 2457–2486.
  • W. Gutierrez, L.F. Garcia, and I.D. Mikhailov, Coupled donors in quantum ring in a threading magnetic field, Phys. E 43 (2010), pp. 559–566.
  • M. Solaimani, Binding energy and diamagnetic susceptibility of donor impurities in quantum dots with different geometries and potentials, Mat. Sci. Eng. B 262 (2020), pp. 114694.
  • H. Bahramiyan, Electric field and impurity effect on nonlinear optical rectification of a double cone like quantum dot, Opt. Mater. 75 (2018), pp. 187–195.
  • A. Bera and M. Ghosh, Exploring optical dielectric function of impurity doped quantum dots under combined influence of hydrostatic pressure and temperature and in presence of noise, Chem. Phys. Lett. 667 (2017), pp. 103–107.
  • A. Ghosh and M. Ghosh, Role of anisotropy, spatially-varying effective mass, and dielectric constant on self-polarisation effect of doped quantum dots in presence of noise, Superlattices Microstruct 104 (2017), pp. 438–444.
  • F. Aydin, H. Sari, E. Kasapoglu, S. Sakiroglu, and I. Sokmen, Anisotropy dependence of the optical response in an impurity doped quantum dot under intense laser field, Phys. E 114 (2019), pp. 113566.
  • A. Boda, Effect of magnetic field on the energy spectrum, binding energy and magnetic susceptibility of an impurity in a 2D Gaussian quantum dot, Ecs J. Sol. State Sci. Techn. 10 (2021), pp. 041001.
  • G. Rezaei and S. Shojaeian Kish, Effects of external electric and magnetic fields, hydrostatic pressure and temperature on the binding energy of a hydrogenic impurity confined in a two-dimensional quantum dot, Phys. E 45 (2012), pp. 56–60.
  • Z. Xiao, J. Zhu, and F. He, Magnetic field dependence of the binding energy of a hydrogenic impurity in a spherical quantum dot, J. Appl. Phys. 79 (1996), pp. 9181.
  • S. Sarkar, A.P. Ghosh, A. Mandal, and M. Ghosh, Modulating nonlinear optical properties of impurity doped quantum dots via the interplay between anisotropy and Gaussian white noise, Superlattices Microstruct. 90 (2016), pp. 297–307.
  • A. Bera, S. Saha, J. Ganguly, and M. Ghosh, Noise-driven diamagnetic susceptibility of impurity doped quantum dots: role of anisotropy, position-dependent effective mass and position-dependent dielectric screening function, Chem. Phys. 474 (2016), pp. 36–43.
  • A. Bera, S. Saha, J. Ganguly, and M. Ghosh, Exploring diamagnetic susceptibility of impurity doped quantum dots in presence of Gaussian white noise, J. Phys. Chem. Solids 98 (2016), pp. 190–1.
  • A. Montes, C.A. Duque, and N. Porras-Montenegro, Density of shallow-donor impurity states in rectangular cross section GaAs quantum-well wires under applied electric field, J. Phys. Condens. Matter 10 (1998), pp. 5351–5358.
  • C.A. Duque, C.A.N. Porras-Montenegro, Z. Barticevic, M. Pacheco, and L.E. Oliveira, Electron-hole transitions in self-assembled InAs/GaAs quantum dots: Effects of applied magnetic fields and hydrostatic pressure, Microelectron. J. 36 (2005), pp. 231–233.
  • N. D. Hien, C. A. Duque, E. Feddi, N. V. Hieu, H. D. Trien, L. T.T. Phuong, B. D. Hoi, Le T. Hoa, C. V. Nguyen, N. N. Hieu, and H. V. Phuc, Magneto-optical effect in GaAs/GaAlAs semi-parabolic quantum well, Thin. Solid. Films. 682 (2019), pp. 10–17.
  • C.M. Duque, M.G. Barseghyan, and C.A. Duque, Hydrogenic impurity binding energy in vertically coupled Ga1−xAlxAs quantum-dots under hydrostatic pressure and applied electric field, Phys. B 404 (2009), pp. 5177–5180.
  • H.K. Sharma, A. Boda, B. Boyacioglu, and A. Chatterjee, Electronic and magnetic properties of a two-electron Gaussian GaAs quantum dot with spin-Zeeman term: a study by numerical diagonalization, J. Magn. Mater. 469 (2019), pp. 171–177.
  • C. Heyn and C.A. Duque, Donor impurity related optical and electronic properties of cylindrical GaAs/Ga1−xAlxAs quantum dots under tilted electric and magnetic fields, Sci. Rep. 10 (2020), pp. 9155.
  • L. Belamkadem, O. Mommadi, J.A. Vinasco, D. Laroze, A. El Moussaouy, M. Chnafi, and C.A. Duque, Electronic properties and hydrogenic impurity binding energy of a new variant quantum dot, Phys. E129 (2021), pp. 114642.
  • G. Cantale, D. Ninno, and G. Iadonisi, Confined states in ellipsoidal quantum dots, J. Phys. Condens. Matter 12 (2000), pp. 9019–9036.
  • W. Xie, Third-order nonlinear optical susceptibility of a donor in elliptical quantum dots, Superlattices Microstruct. 53 (2013), pp. 49–54.
  • A.V. Madhav and T. Chakraborty, Electronic properties of anisotropic quantum dots in a magnetic field, Phys. Rev. B 49 (1994), pp. 8163–8168.
  • W. Xie, Optical anisotropy of a donor in ellipsoidal quantum dots, Phys. B 407 (2012), pp. 4588–4591.
  • T. Chen and W. Xie, Nonlinear optical properties of a three-dimensional anisotropic quantum dot, Solid State Commun. 152 (2012), pp. 314–319.
  • G.H. Safarpour, M.A. Izadi, M. Novzari, E. Niknam, and M. Moradi, Anisotropy effect on the nonlinear optical properties of a three-dimensional quantum dot confined at the center of a cylindrical nano-wire, Nanostructures 59 (2014), pp. 124–132.
  • G.L. Miranda-Pedraza, W. Ospina, and E. Giraldo-Tobon, Effects of applied electric fields on optical responses in elliptical quantum nanosystems, Phys. Status Solidi. B 254 (2017), pp. 1600289.
  • E.C. Niculescu, C. Stan, M. Cristea, and C. Trusca, Magnetic-field dependence of the impurity states in a dome-shaped quantum dot, Chem. Phys. 493 (2017), pp. 32–41.
  • A.L. Vartanian, A.L. Asatryan, and L.A. Vardanyan, Influence of image charge effect on impurity-related optical absorption coefficients and refractive index changes in a spherical quantum dot, Superlattices Microstruct. 103 (2017), pp. 205–212.
  • D.S. Acosta Coden, R.H. Romero, A. Ferron, and S.S. Gomez, Optimal control of a charge qubit in a double quantum dot with a Coulomb impurity, Phys. E 86 (2017), pp. 36–43.
  • P. Hosseinpour, A. Soltani-Vala, and J. Barvestani, Effect of impurity on the absorption of a parabolic quantum dot with including Rashba spin-orbit interaction, Phys. E 80 (2016), pp. 48–52.
  • F.J. Betancur, I.D. Mikhailov, J.H. Marinz, and L.E. Oliveira, Electronic structure of donor-impurity complexes in GaAs/Ga1−xAlxAs quantum wells, J. Phys. Condens. Matter. 10 (1998), pp. 7283–7292.
  • R. Manjarres-Garcia, G.E. Escorcia-Salas, J. Manjarres-Torres, I.D. Mikhailov, and J. Sierra-Ortega, Double-donor complex in vertically coupled quantum dots in a threading magnetic field, Nanoscale Res. Lett. 7 (2012), pp. 531.
  • M. R-Fulla, J.H. MarÃn, W. Gutiirrez, M.E. Mora-Ramos, and C.A. Duque, Essential properties of a D2+ molecular complex confined in ring-like nanostructures under external probes: magnetic field and hydrostatic pressure, Superlattices Microstruct 67 (2014), pp. 207–220.
  • S. Kang, Y. -M. Liu, and T. -Y. Shi, The characteristics for H2+-like impurities confined by spherical quantum dots, Eur. Phys. J. B 63 (2008), pp. 37–42.
  • S. Kang, Y. -M. Liu, and T. -Y. Shi, H2+-like impurities confined by spherical quantum dots: a candidate for charge qubits, Commun. Theor. Phys. 50 (2008), pp. 767–770.
  • J.L. Movilla, A. Ballester, and J. Planelles, Coupled donors in quantum dots: quantum size and dielectric mismatch effects, Phys. Rev. B 79 (2009), pp. 195319.
  • R. Manjarres-Garcia, G.E. Escorcia-Salas, I.D. Mikhailov, and J. Sierra-Ortega, Singly ionized double donor complex in vertically coupled quantum dots, Nanoscale Res. Lett. 7 (2012), pp. 489.
  • N. Hernandez, R. Lopez, J.A. Alvarez, J.H. Marin, M.R. Fulla, and H. Tobon, Optical absorption computation of a D2+ artificial molecule in GaAs/Ga1−xAlxAs nanometer-scale rings, Optik 245 (2021), pp. 167637.
  • E. Giraldo-Tobon, J.L. Palacio, G.L. Miranda, and M.R. Fulla, Non-linear response under terahertz radiation of an asymmetric Ga1−xAlxAs/GaAs/Ga1−yAlyAs V-groove nanowire confining a singly-ionized double donor, J. Mater. Sci. 57 (2022), pp. 8406–8416.
  • Y. Li, C. Yannouleas, and U. Landman, Three-electron anisotropic quantum dots in variable magnetic fields: exact results for excitation spectra, spin structures, and entanglement, Phys. Rev. B 76 (2007), pp. 245310.
  • A. Tiutiunnyk, V. Tulupenko, M.E. Mora-Ramos, E. Kasapoglu, F. Ungan, H. Sari, I. Sokmen, and C.A. Duque, Electron-related optical responses in triangular quantum dots, Phys. E 60 (2014), pp. 127–132.
  • A. Tiutiunnyk, V. Tulupenko, V. Akimov, R. Demedyuk, A.L. Morales, M.E. Mora-Ramos, A. Radu, and C.A. Duque, Study of electron-related intersubband optical properties in three coupled quantum wells wires with triangular transversal section, Superlattices Microstruct. 87 (2015), pp. 131–136.
  • H. Sari, E.B. Al, E. Kasapoglu, S. Sakiroglu, I. Sokmen, M. Toro-Escobar, and C.A. Duque, Electronic and optical properties of a complex in two-dimensional quantum dots with Gaussian confinement potential, Eur. Phys. J. Plus. 137 (2022), pp. 464.
  • J. J. Stephanos and A. W. Addison, Electrons, Atoms, and Molecules in Inorganic Chemistry: A Worked Examples Approach, Academic Press, 2017.
  • S. Saravana Kumar and A. John Peter, Diamagnetic susceptibility of two donors in a parabolic GaAs/GaAlAs quantum dot, J. Nanoelectron. Optoelectron. 7 (2012), pp. 376–380.
  • J. Richard Christman, Fundamentals of Solid State Physics, John Wiley & Sons, New York, 1988.
  • C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York, 1996.
  • S.C. Wang, The diamagnetic susceptibility of hydrogen molecule and of helium in the new quantum mechanics, PNAS 12 (1927), pp. 798–800.
  • W. Xie, A study of an exciton in a quantum dot with Woods-Saxon potential, Superlattices Microstruct. 46 (2009), pp. 693–699.
  • R. Khordad, Use of modified Gaussian potential to study an exciton in a spherical quantum dot, Superlattices Microstruct. 54 (2013), pp. 7–15.
  • H. Dakhlaoui, J.A. Vinasco, and C.A. Duque, External fields controlling the linear and nonlinear optical properties of quantum cascade laser based on staircase-like quantum wells, Superlattices Microstruct. 155 (2021), pp. 106885.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.