108
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Electrical conductivity and Hall effect in n-type CdS

ORCID Icon
Pages 1464-1506 | Received 04 Oct 2022, Accepted 25 Apr 2023, Published online: 11 May 2023

References

  • F.A. Kroger, H.J. Vink, and J. Volger, Temperature dependence of the Hall effect and the resistivity of CdS single crystals. Philips Res. Rep. 10 (1955), pp. 39–76.
  • K. Morimoto, M. Kitagawa, and T. Yoshida, Evaluation of impurity content by Hall-effect analysis in CdS. J. Cryst. Growth. 59 (1982), pp. 254–262.
  • K. Morimoto and M. Kitagawa, Electrical-conduction in undoped CdS at low-temperatures. J. Phys. Soc. Jpn. 54 (1985), pp. 4271–4281.
  • S. Toyotomi and K. Morigaki, Impurity conduction in cadmium sulfide at low temperatures. J. Phys. Soc. Jpn. 25 (1968), pp. 807–815.
  • H.H. Woodbury, Anomalous mobility behavior in CdS and CdTe - electrical evidence for impurity pairs. Phys. Rev. B. 9 (1974), pp. 5188–5194.
  • A.R. Hutson, Role of dislocations in the electrical-conductivity of CdS. Phys. Rev. Lett. 46 (1981), pp. 1159–1162.
  • Y. Kajikawa, Analysis of low-temperature data of Hall-effect measurements on Ga-doped p-Ge on the basis of an impurity Hubbard band model. Phys. Stat. Sol. C. 14 (2017), p. 1700071.
  • Y. Kajikawa, Refined analysis of low-temperature data of Hall-effect measurements on Sb-doped n-Ge on the basis of an impurity-Hubbard-band model. Phys. Stat. Sol. C. 14 (2017), p. 1700151.
  • Y. Kajikawa, Updated analysis of low-temperature data of Hall-effect measurements on P-doped n-Si on the basis of an impurity-Hubbard-band model. Phys. Stat. Sol. C. 14 (2017), p. 1700228.
  • Y. Kajikawa, Negative Hall factor of acceptor impurity hopping conduction in p-type 4H-SiC. J. Electron. Mater. 50 (2021), pp. 1247–1259.
  • Y. Kajikawa, Analysis of the Hall-effect data on Mn-doped GaAs with taking into account the Hall factor for nearest-neighbor hopping conduction. Phys. Stat. Sol. C. 13 (2016), pp. 387–394.
  • Y. Kajikawa, Reappraisal of conduction and Hall effect due to impurity Hubbard bands in weakly compensated n-GaAs. Phys. Stat. Sol. B. 255 (2018), p. 1800063.
  • Y. Kajikawa, Analysis of low-temperature data of Hall-effect measurements on p-type InP using a small-polaron theory. Phys. Stat. Sol. C. 14 (2017), p. 1600217.
  • Y. Kajikawa, Significant effects of the D− band on the Hall coefficient and the Hall mobility of n-InP. Phys. Stat. Sol. B. 257 (2019), p. 1900354.
  • Y. Kajikawa, Analysis of the experimental data for impurity-band conduction in Mn-doped InSb. Phys. Stat. Sol. C. 14 (2017), p. 1600215.
  • Y. Kajikawa, Restudy of low-temperature data of Hall-effect measurements on compensated n-InSb and n-InAs on the basis of an impurity-Hubbard-band model. Mater. Sci. Eng. B. 263 (2020), p. 114809.
  • Y. Kajikawa, Multi-band analysis of temperature-dependent transport coefficients (conductivity, Hall, Seebeck, and Nernst) of Ni-doped CoSb3. J. Appl. Phys. 119 (2016), p. 055702.
  • Y. Kajikawa, Hopping conduction in FeSi. I. The Hall, Seebeck, and Nernst effects due to hopping conduction in the top and bottom impurity Hubbard bands. AIP. Adv. 11 (2021), p. 105210.
  • Y. Kajikawa, Multi-band analyses of the conductivity, the Hall coefficient, and the Seebeck coefficient of single crystal p-type β-FeSi2. J. Alloys Compd. 846 (2020), p. 155861.
  • Y. Kajikawa, Analyses of low-temperature transport and thermoelectric properties of polycrystalline undoped n-ZrNiSn. AIP. Adv. 11 (2021), p. 055108.
  • Y. Kajikawa, Multi-band simultaneous fits of transport data on p-type ScNiSb with including impurity conduction. Int. J. Modern Phys. B 36 (2022), p. 2250071.
  • X.C. Yang, C.C. Xu, and N.C. Giles, Intrinsic electron mobilities in CdSe, CdS, ZnO, and ZnS and their use in analysis of temperature-dependent Hall measurements. J. Appl. Phys. 104 (2008), p. 073727.
  • A.I. Ivaschenko and M. Aoki, Electrical-properties of n-CdS grown from tellurium solution. Jpn. J. Appl. Phys. 18 (1979), pp. 839–840.
  • A.I. Ivaschenko and M. Aoki, Photoconductivity and crystal perfection ㏌ n-CdS grown from Te solution. Jpn. J. Appl. Phys. 18 (1979), pp. 1873–1874.
  • D.C. Look, Electrical Characterization of GaAs Materials and Devices, Wiley, New York, 1989.
  • W.S. Baer and R.N. Dexter, Electron cyclotron resonance ㏌ CdS. Phys. Rev. 135 (1964), pp. A1388–A1393.
  • M.V. Kurik, Electron effective mass ㏌ II-VI semiconductors. Phys. Lett. A. 24 (1967), pp. 742–743.
  • J.L. Boone and G. Cantwell, Electrical-properties of pure CdS. J. Appl. Phys. 57 (1985), pp. 1171–1175.
  • T.G. Castner, N.K. Lee, H.S. Tan, L. Moberly, and O. Symko, The low-frequency, low-temperature dielectric behavior of n-type germanium below the insulator-metal transition. J. low Temp. Phys. 38 (1980), pp. 447–473.
  • S. Abboudy, Estimation of the effective dielectric response from hopping activation energy in the vicinity of insulator-metal transition in semiconductors. Int. J. Mod. Phys. B. 10 (1996), pp. 59–95.
  • V.A. Kasiyan, D.D. Nedeoglo, A.V. Simashkevich, and I.N. Timchenko, Critical behaviour of n-ZnSe paeameters in vicinity of the metal-insulator transition. Phys. Stat. Sol. B. 154 (1989), pp. 691–702.
  • N.D. Nedeoglo, R. Laiho, A.V. Lashkul, E. Lahderanta, and M.A. Shakhov, Influence of the magnetic field on the conductivity within the Coulomb gap of n-ZnSe single crystals doped with Ag. Semicond. Sci. Technol. 21 (2006), pp. 1335–1340.
  • N.A. Poklonski, S.A. Vyrko, and A.G. Zabrodskii, Electrostatic models of insulator-metal and metal-insulator concentration phase transitions in Ge and Si crystals doped by hydrogen-like impurities. Phys. Solid State. 46 (2004), pp. 1101–1106.
  • F.D. Adams, D.C. Look, L.C. Brown, and D.R. Locker, Nuclear-magnetic-resonance studies of semiconductor-to-metal transition in chlorine-doped cadmium sulfide. Phys. Rev. B. 4 (1971), pp. 2115–2123.
  • N.F. Mott, The transition to the metallic state. Phil. Mag. 6 (1961), pp. 287–309.
  • T. Matsubara and Y. Toyozawa, Theory of impurity band conduction in semiconductors - An approach to random lattice problem. Prog. Theor. Phys. 26 (1961), pp. 739–756.
  • D.L. Rode, Electron mobility in II-VI semiconductors. Phys. Rev. B. 2 (1970), pp. 4036–4044.
  • N.D. Kataria and P.C. Mathur, Polaron effective mass in normal-type cadmium-sulfide. J. Appl. Phys. 48 (1977), pp. 5127–5130.
  • P.C. Mathur, B.R. Sethi, O.P. Sharma, and P.L. Talwar, Effect of high-temperature annealing in cadmium on the electrical transport properties of single-crystals of cadmium-sulfide. J. Phys. C-Solid State Phys. 12 (1979), pp. 2333–2339.
  • N.A. Poklonski and V.F. Stelmakh, Screening of electrostatic fields ㏌ crystalline semiconductors by electrons hopping over defects. Phys. Stat. Sol. B. 117 (1983), pp. 93–99.
  • N.A. Poklonskiĭ, S.Y. Lopatin, and A.G. Zabrodskiĭ, A lattice model of nearest-neighbor hopping conduction and its application to neutron-doped Ge: Ga. Phys. Solid State. 42 (2000), pp. 441–449.
  • H. Böttger and V.V. Bryksin, The hopping Hall mobility in disordered systems. Solid State Commun. 23 (1977), pp. 227–231.
  • H. Böttger and V.V. Bryksin, Hopping Conduction in Solids, Akademie-Verlag, Berlin, 1985.
  • Y. Kajikawa, Deconvolution of local activation energy of hopping conductivity: Application to p-Ge. Int. J. Mod. Phys. B. 34 (2020), p. 2050069.
  • Y. Kajikawa, Two acceptor levels and hopping conduction in Mn-doped GaAs. Jpn. J. Appl. Phys. 56 (2017), p. 011201.
  • Y. Kajikawa, Hall factor for hopping conduction in n- and p-type GaN. Phys. Stat. Sol. C. 14 (2017), p. 1600129.
  • O. Bleibaum, H. Böttger, and V.V. Bryksin, Effective-medium method for hopping transport in a magnetic field. Phys. Rev. B. 56 (1997), pp. 6698–6711.
  • D. Emin and T. Holstein, Studies of small-polaron motion IV. Adiabatic theory of the Hall effect. Ann. Phys. 53 (1969), pp. 439–520.
  • R Németh and B. Mühlschlegel, Hopping Hall conductivity in disordered and granular systems. Solid State Communications 66(9) (1988), pp. 999–1001.
  • H. Shenker, Low-field breakdown, non-ohmic conductivity, and photoconductivity of CdS at low temperatures. J. Phys. Chem. Solids 19 (1961), pp. 1–7.
  • H. Ogi, Y. Tsutsui, N. Nakamura, A. Nagakubo, M. Hirao, M. Imade, M. Yoshimura, and Y. Mori, Hopping conduction and piezoelectricity in Fe-doped GaN studied by non-contacting resonant ultrasound spectroscopy. Appl. Phys. Lett. 106 (2015), pp. 091901.
  • R.S. Crandall, Electrical conduction in n-type cadmium sulfide at low temperatures. Phys. Rev. 169 (1968), pp. 577–584.
  • A.L. Efros and B.I. Shklovskii, Coulomb gap and low temperature conductivity of disordered systems. J. Phys. C: Solid State Phys. 8 (1975), pp. L49–L51.
  • T. Toyabe and S. Asai, Theory of phonon-assisted hopping conduction in piezoelectric semiconductor. Phys. Rev. B. 8 (1973), pp. 1531–1538.
  • R.H. Bube, Photoconductivity and crystal imperfections in cadmium sulfide crystals .2. Determination of characteristic photoconductivity quantities. J. Chem. Phys. 23 (1955), pp. 18–25.
  • M. Hornung and H.V. Löhneysen, Crossover from Mott to Efros-Shklovskii variable range-hopping in Si:P. Czech J. Phys. 46(Suppl. S5) (1996), pp. 2437–2438.
  • M. Hornung, M. Iqbal, S. Waffenschmidt, and H.V. Löhneysen, Analysis of variable-range hopping conductivity in Si:P. Phys. Stat. Sol. B. 218 (2000), pp. 75–81.
  • C.H. Henry and K. Nassau, Magneto-optical studies of excited states of Cl donor in CdS. Phys. Rev. B. 2 (1970), pp. 997–1004.
  • H.H. Woodbury and M. Aven, Shallow-donor ionization energies in II-VI compounds. Phys. Rev. B. 9 (1974), pp. 5195–5202.
  • L.H. Gordy, Impurity conduction in cadmium-sulfide between 0.4 and 4.2 K. Bull. Am. Phys. Soc. 18 (1973), pp. 353–353.
  • J.F. Scott, T.C. Damen, and P.A. Fleury, Linewidths and two-electron processes in spin-flip Raman scattering from CdS and ZnSe. Phys. Rev. B. 6 (1972), pp. 3856–3864.
  • J.G. Ramos, Spin-flip line-shape in CdS. Solid State Commun. 27 (1978), pp. 309–311.
  • I. Gunal and M. Parlak, Current transport mechanisms in low resistive CdS thin films. J. Mater. Sci.-Mater. Electron. 8 (1997), pp. 9–13.
  • Y. Kajikawa, Conduction model covering non-degenerate through degenerate polycrystalline semiconductors with non-uniform grain-boundary potential heights based on an energy filtering model. J. Appl. Phys. 112 (2012), p. 123713.
  • B.R. Sethi, P.K. Goyal, O.P. Sharma, and P.C. Mathur, High-field DC conductivity in n-type CdS single-crystals annealed in molten indium. Phys. Stat. Sol. A. 75 (1983), pp. 83–89.
  • U.V. Desnica, I.D. Desnica-Frankovic, R. Magerle, and M. Deicher, Compensating defects and electrical activation of donors in CdS. Physica B-Condens. Matter. (1999), pp. 273–274. pp. 907-910.
  • R.T. Bate, R.D. Baxter, F.J. Reid, and A.C. Beer, Conduction electron scattering by ionized donors in InSb at 80°K. J. Phys. Chem. Solids. 26 (1965), pp. 1205–1214.
  • O. Malyk, V. Rodych, and H. Il’Chuk, The local electron interaction with crystal defects in wurtzite CdS. Phys. Stat. Sol. C. 13 (2016), pp. 494–497.
  • J.R. Meyer and F.J. Bartoli, Phase-shift calculation of electron mobility in n-type silicon at low temperatures. Phys. Rev. B. 24 (1981), pp. 2089–2100.
  • S. Asai, T. Toyabe, and M. Hirano, Impurity conduction and non-Ohmic properties of high purity n-type gallium arsenide. 10th Int. Conf. Physics of Semiconductors, United States Atomic Energy Commission, Cambridge, 1970, pp. 578–583.
  • A.R. Hutson, Piezoelectric scattering and phonon drag in ZnO and CdS. J. Appl. Phys. 32 (1961), pp. 2287–2292.
  • Y. Kajikawa, Deconvolution of temperature dependence of conductivity, its reduced activation energy, and Hall-effect data for analysing impurity conduction in n-ZnSe. Phil. Mag. 100 (2020), pp. 2018–2039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.