81
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Scratching a soft layer above a hard substrate

, & ORCID Icon
Pages 1411-1422 | Received 29 Dec 2022, Accepted 04 May 2023, Published online: 15 May 2023

References

  • X. Ge, T. Halmans, J. Li, and J. Luo, Molecular behaviors in thin film lubrication – part three: Superlubricity attained by polar and nonpolar molecules, Friction 7 (2019), pp. 625–636.
  • Y. Meng, J. Xu, Z. Jin, B. Prakash, and Y. Hu, A review of recent advances in tribology, Friction 8 (2020), pp. 221–300.
  • X. Li, L. Lu, J. Li, X. Zhang, and H. Gao, Mechanical properties and deformation mechanisms of gradient nanostructured metals and alloys, Nat. Rev. Mater. 5 (2020), pp. 706–723.
  • S.V. Prasad, C.C. Battaile, and P.G. Kotula, Friction transitions in nanocrystalline nickel, Scr. Mater.64 (2011), pp. 729–732.
  • C.C. Battaile, B.L. Boyce, C.R. Weinberger, S.V. Prasad, J.R. Michael, and B.G. Clark, The hardness and strength of metal tribofilms: An apparent contradiction between nanoindentation and pillar compression, Acta Mater. 60 (2012), pp. 1712–1720.
  • P. Stoyanov, R. Merz, P. Romero, F.C. Wählisch, O.T. Abad, R. Gralla, P. Stemmer, M. Kopnarski, M. Moseler, R. Bennewitz, and M. Dienwiebel, Surface softening in metal-ceramic sliding contacts: An experimental and numerical investigation, Am. Chem. Soc. Nano 9 (2015), pp. 1478.
  • T. Kuwahara, P.A. Romero, S. Makowski, V. Weihnacht, G. Moras, and M. Moseler, Mechano-chemical decomposition of organic friction modifiers with multiple reactive centres induces superlubricity of ta-C, Nat. Commun. 10 (2019), pp. 151.
  • A. Vakis, V. Yastrebov, J. Scheibert, L. Nicola, D. Dini, C. Minfray, A. Almqvist, M. Paggi, S. Lee, G. Limbert, J. Molinari, G. Anciaux, R. Aghababaei, S. Echeverri Restrepo, A. Papangelo, A. Cammarata, P. Nicolini, C. Putignano, G. Carbone, S. Stupkiewicz, J. Lengiewicz, G. Costagliola, F. Bosia, R. Guarino, N. Pugno, M. Müser, and M. Ciavarella, Modeling and simulation in tribology across scales: An overview, Tribol. Int. 125 (2018), pp. 169–199.
  • R. Komanduri, N. Chandrasekaran, and L.M. Raff, MD simulation of indentation and scratching of single crystal aluminum, Wear 240 (2000), pp. 113–143.
  • D. Mulliah, D. Christopher, S.D. Kenny, and R. Smith, Nanoscratching of silver (100) with a diamond tip, Nucl. Instrum. Methods B 202 (2003), pp. 294–299.
  • D. Mulliah, S.D. Kenny, R. Smith, and C.F. Sanz-Navarro, Molecular dynamic simulations of nanoscratching of silver (100), Nanotechnology 15 (2004), pp. 243–249.
  • S. Jun, Y. Lee, S.Y. Kim, and S. Im, Large-scale molecular dynamics simulations of Al(111) nanoscratching, Nanotechnology 15 (2004), pp. 1169–1174.
  • D. Mulliah, S.D. Kenny, E. McGee, R. Smith, A. Richter, and B. Wolf, Atomistic modelling of ploughing friction in silver, iron and silicon, Nanotechnology 17 (2006), pp. 1807–1818.
  • T.H. Fang, C.H. Liu, S.T. Shen, S.D. Prior, L.W. Ji, and J.H. Wu, Nanoscratch behavior of multi-layered films using molecular dynamics, Appl. Phys. A 90 (2008), pp. 753–758.
  • C. Lu, Y. Gao, G. Michal, H. Zhu, N.N. Huynh, and A.K. Tieu, Molecular dynamic simulation of effect of crystallographic orientation on nano-indentation/scratching behaviors of BCC iron, in Advanced Tribology, J. Luo, Y. Meng, T. Shao, and Q. Zhao, eds., Springer, Berlin, 2010, pp. 562–563.
  • K. Mylvaganam and L.C. Zhang, Nanotwinning in monocrystalline silicon upon nanoscratching, Scr. Mater. 65 (2011), pp. 214–216.
  • Y. Gao, C.J. Ruestes, and H.M. Urbassek, Nanoindentation and nanoscratching of iron: Atomistic simulation of dislocation generation and reactions, Comput. Mater. Sci. 90 (2014), pp. 232–240.
  • Y. Gao, A. Brodyanski, M. Kopnarski, and H.M. Urbassek, Nanoscratching of iron: A molecular dynamics study of the influence of surface orientation and scratching direction, Comput. Mater. Sci.103 (2015), pp. 77–89.
  • I. Alabd Alhafez, A. Brodyanski, M. Kopnarski, and H.M. Urbassek, Influence of tip geometry on nanoscratching, Tribol. Lett. 65 (2017), pp. 26.
  • J. Lin, F. Jiang, Q. Wen, Y. Wu, J. Lu, Z. Tian, and N. Wang, Deformation anisotropy of nano-scratching on c-plane of sapphire: A molecular dynamics study and experiment, Appl. Surf. Sci.546 (2021), pp. 149091.
  • C.R. Dandekar and Y.C. Shin, Modeling of machining of composite materials: A review, Int. J. Mach. Tools Manuf. 57 (2012), pp. 102–121.
  • Z. Zhang, I. Alabd Alhafez, and H.M. Urbassek, Scratching an Al/Si interface: Molecular dynamics study of a composite material, Tribol. Lett. 66 (2018), pp. 86.
  • A. Klemenz, L. Pastewka, S.G. Balakrishna, A. Caron, R. Bennewitz, and M. Moseler, Atomic scale mechanisms of friction reduction and wear protection by graphene, Nano Lett. 14 (2014), pp. 7145–7152.
  • W. Wang, Q. Peng, Y. Dai, Z. Qian, and S. Liu, Distinctive nanofriction of graphene coated copper foil, Comput. Mater. Sci. 117 (2016), pp. 406–411.
  • H. Xie, Z. Ma, H. Zhao, and L. Ren, Atomic perspective of contact protection in graphene-coated high-entropy films, Tribol. Int. 174 (2022), pp. 107748.
  • H. Xie, Z. Ma, W. Zhang, H. Zhao, and L. Ren, Probing the atomic-scale origins of anti-friction and wear-resisting in graphene-coated high-entropy alloys, Mater. Des. 223 (2022), pp. 111178.
  • Y. Liu, Y. Liu, T. Ma, and J. Luo, Atomic scale simulation on the anti-pressure and friction reduction mechanisms of MoS2 monolayer, Materials 11 (2018), pp. 683.
  • C.W. Huang, T.Y. Lai, T.H. Fang, and S.W. Liang, Interfacial and tribological characteristics of MoS2 on Ni under nanoindentation and nanoscratch, Phys. Stat. Sol. (b) (2023), pp. 2200555.
  • C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation, Phys. Rev. B 58 (1998), pp. 11085–11088.
  • G. Ziegenhain, A. Hartmaier, and H.M. Urbassek, Pair vs many-body potentials: Influence on elastic and plastic behavior in nanoindentation of fcc metals, J. Mech. Phys. Sol. 57 (2009), pp. 1514–1526.
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19
  • A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO – the open visualization tool, Model. Simul. Mater. Sci. Eng. 18 (2010), pp. 015012
  • A. Stukowski and K. Albe, Extracting dislocations and non-dislocation crystal defects from atomistic simulation data, Model. Simul. Mater. Sci. Eng. 18 (2010), pp. 085001.
  • A. Stukowski, V.V. Bulatov, and A. Arsenlis, Automated identification and indexing of dislocations in crystal interfaces, Model. Simul. Mater. Sci. Eng. 20 (2012), pp. 085007.
  • A. Stukowski, Dislocation analysis tool for atomistic simulations, in Handbook of Materials Modeling, W. Andreoni and S. Yip, eds., Cham. Springer International Publishing, 2018, pp. 1–14.
  • C.J. Smithells, Metals Reference Handbook, Butterworths, London, 1949.
  • G. Ziegenhain and H.M. Urbassek, Effect of material stiffness on hardness: A computational study based on model potentials, Philos. Mag. 89 (2009), pp. 2225–2238.
  • S.C. Saxena and R.S. Gambhir, Second virial coefficient of gases and gaseous mixtures on the morse potential, Mol. Phys. 6 (1963), pp. 577–583.
  • A. Saran, Potential parameters for like and unlike interactions on morse potential model, Indian J. Phys. 37 (1963), pp. 491–499.
  • C.L. Kong, Combining rules for intermolecular potential parameters. ii. rules for the Lennard–Jones (12–6) potential and the morse potential, J. Chem. Phys. 59 (1973), pp. 2464–2467.
  • K.J. Van Vliet, J. Li, T. Zhu, S. Yip, and S. Suresh, Quantifying the early stages of plasticity through nanoscale experiments and simulations, Phys. Rev. B 67 (2003), pp. 104105.
  • I. Alabd Alhafez, C.J. Ruestes, and H.M. Urbassek, Size of the plastic zone produced by nanoscratching, Tribol. Lett. 66 (2018), pp. 20.
  • Y. Lee, J.Y. Park, S.Y. Kim, S. Jun, and S. Im, Atomistic simulations of incipient plasticity under Al(111) nanoindentation, Mech. Mater. 37 (2005), pp. 1035–1048.
  • I. Shin and E.A. Carter, Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum, Phys. Rev. B 88 (2013), pp. 064106.
  • F.P. Bowden and D. Tabor, Friction, lubrication and wear: A survey of work during the last decade, Br. J. Appl. Phys. 17 (1966), pp. 1521–1544.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.