155
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Theory of melting of glasses

Pages 1650-1663 | Received 13 Jan 2023, Accepted 06 Apr 2023, Published online: 09 Jul 2023

References

  • C. Angell, Perspective on the glass transition, J. Phys. Chem. Solids 49 (8) (1988), pp. 863–871. Available at https://www.sciencedirect.com/science/article/pii/0022369788900029.
  • J. Jackle, Models of the glass transition, Rep. Prog. Phys. 49 (2) (1986), pp. 171–231. https://doi.org/10.1088/0034-4885/49/2/002.
  • P.G. Debenedetti and F.H. Stillinger, Supercooled liquids and the glass transition, Nature 410 (6825) (2001), pp. 259–267. https://doi.org/10.1038/35065704.
  • M.D. Ediger, C.A. Angell, and S.R. Nagel, Supercooled liquids and glasses, J. Phys. Chem. 100 (31) (1996), pp. 13200–13212.
  • L. Berthier and G. Biroli, Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys. 83 (2) (2011), pp. 587–645. https://doi.org/10.1103/RevModPhys.83.587.
  • G. Biroli, J.-P. Bouchaud, and F. Ladieu, Amorphous order and non-linear susceptibilities in glassy materials. arXiv:2101.03836 (2021).
  • G. Tarjus, S.A. Kivelson, Z. Nussinov, and P. Viot, The frustration-based approach of supercooled liquids and the glass transition: A review and critical assessment, J. Phys. Condens. Matter 17 (50) (2005), pp. R1143–R1182. https://doi.org/10.1088/0953-8984/17/50/r01.
  • P. Charbonneau, J. Kurchan, G. Parisi, P. Urbani, and F. Zamponi, Glass and jamming transitions: From exact results to finite-dimensional descriptions, Annu. Rev. Condens. Matter Phys. 8 (1) (2017), pp. 265–288. https://doi.org/10.1146/annurev-conmatphys-031016-025334.
  • R.C. Zeller and R.O. Pohl, Thermal conductivity and specific heat of noncrystalline solids, Phys. Rev. B 4 (6) (1971), pp. 2029–2041. https://doi.org/10.1103/PhysRevB.4.2029.
  • R.O. Pohl, X. Liu, and E. Thompson, Low-temperature thermal conductivity and acoustic attenuation in amorphous solids, Rev. Mod. Phys. 74 (4) (2002), pp. 991–1013. https://doi.org/10.1103/RevModPhys.74.991.
  • C.C. Yu and H.M. Carruzzo, Two-level systems and the tunneling model: A critical view. arxiv2101.02787 (2021). Available at https://arxiv.org/abs/2101.02787.
  • P. Anderson, B.I. Halperin, and C.M. Varma, Anomalous low-temperature thermal properties of glasses and spin glasses, Philos. Mag. 25 (1) (1972), pp. 1–9. https://doi.org/10.1080/14786437208229210.
  • W.A. Phillips, Tunneling states in amorphous solids, J. Low. Temp. Phys. 7 (3-4) (1972), pp. 351–360. https://doi.org/10.1007/BF00660072.
  • T. Pérez-Castañeda, C. Rodríguez-Tinoco, J. Rodríguez-Viejo, and M.A. Ramos, Suppression of tunneling two-level systems in ultrastable glasses of indomethacin, Proc. Natl. Acad. Sci. 111 (31) (2014), pp. 11275–11280. https://doi.org/10.1073/pnas.1405545111.
  • D. Queen, Two-level systems in evaporated amorphous silicon, J. Non. Cryst. Solids. 426 (2015), pp. 19–24. Available at https://www.sciencedirect.com/science/article/pii/S0022309315300818.
  • C. Varma, A glimmer into glasses. (2017). https://doi.org/10.36471/JCCM_October_2017_03.
  • C.L. Reynolds, Universal relaxation time in amorphous dielectrics at low temperatures, J. Non Cryst. Solids 37(1) (1980), pp. 125–127.
  • A. Raychaudhuri and R. Pohl, Connection between the low temperature anomaly in glasses and the glass transition temperature, Solid. State. Commun. 37 (2) (1981), pp. 105–108. Available at https://www.sciencedirect.com/science/article/pii/0038109881907225.
  • L. Landau and E. Lifshitz, Theory of Elasticity, Pergamon Press Press, Oxford, UK, 1959.
  • E. Clouet, C. Varvenne, and T. Jourdan, Elastic modeling of point-defects and their interaction, Comput. Mater. Sci. 147 (2018), pp. 49–63. Available at https://www.sciencedirect.com/science/article/pii/S0927025618300673.
  • E. Lerner and E. Bouchbinder, Low-energy quasilocalized excitations in structural glasses, J. Chem. Phys. 155(20) (2021), pp. 200901.
  • J.C. Phillips, Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys, J. Non. Cryst. Solids. 34 (2) (1979), pp. 153–181.
  • M. Thorpe, Continuous deformations in random networks, J. Non. Cryst. Solids. 57 (3) (1983), pp. 355–370. Available at https://www.sciencedirect.com/science/article/pii/0022309383904246.
  • A.J. Liu and S.R. Nagel, The jamming transition and the marginally jammed solid, Annu. Rev. Condens. Matter Phys.1 (1) (2010), pp. 347–369. https://doi.org/10.1146/annurev-conmatphys-070909-104045.
  • M.E. Simon and C.M. Varma, Dynamics of some constrained lattices, Phys. Rev. Lett. 86 (9) (2001), pp. 1781–1784. https://doi.org/10.1103/PhysRevLett.86.1781.
  • Y. He, V. Cvetkovic, and C.M. Varma, Elastic properties of a class of solids with negative thermal expansion, Phys. Rev. B 82 (1) (2010), pp. 014111. https://doi.org/10.1103/PhysRevB.82.014111.
  • P.J. Steinhardt, D.R. Nelson, and M. Ronchetti, Bond-orientational order in liquids and glasses, Phys. Rev. B 28 (2) (1983), pp. 784–805. https://doi.org/10.1103/PhysRevB.28.784.
  • J.P. Sethna, Frustration, curvature, and defect lines in metallic glasses and the cholesteric blue phase, Phys. Rev. B 31 (10) (1985), pp. 6278–6297. https://doi.org/10.1103/PhysRevB.31.6278.
  • E. Aharonov, et al. Direct identification of the glass transition: Growing length scale and the onset of plasticity, Europhys. Lett. 77 (5) (2007), pp. 56002. https://doi.org/10.1209/0295-5075/77/56002.
  • D. Khomenko, C. Scalliet, L. Berthier, D.R. Reichman, and F. Zamponi, Depletion of two-level systems in ultrastable computer-generated glasses, Phys. Rev. Lett. 124 (22) (2020), pp. 225901. https://doi.org/10.1103/PhysRevLett.124.225901.
  • K. Trachenko, M. Dove, M. Harris, and V. Heine, Dynamics of silica glass: Two-level tunnelling states and low-energy floppy modes, J. Phys. Condens. Matter 12 (37) (2000), pp. 8041–8064.
  • P. Chaikin and T. Lubensky, Principles of Condensed Matter Physics, Cambridge University Press, Cambridge, 1995.
  • D.R. Nelson and B.I. Halperin, Dislocation-mediated melting in two dimensions, Phys. Rev. B 19 (5) (1979), pp. 2457–2484. https://doi.org/10.1103/PhysRevB.19.2457.
  • J. Kosterlitz, The critical properties of the two-dimensional xy model, J. Phys. C 7 (6) (1974).1046–1060.
  • J. Jose, S. Kirkpatrick, and D. Nelson, Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model, Phys. Rev. B 16 (3) (1977), pp. 1217–1241.
  • A.P. Young, Melting and the vector coulomb gas in two dimensions, Phys. Rev. B 19 (4) (1979), pp. 1855–1866. https://doi.org/10.1103/PhysRevB.19.1855.
  • M. Abramowitz and A.S. Stegun, eds., Handbook of Mathematical Functions, Dover Publications, Inc., New York, 1965.
  • L.P. Kadanoff and P.C. Martin, Hydrodynamic equations and correlation functions, Ann. Phys. (NY)24 (1963), pp. 419–469.
  • L.-M. Wang, V. Velikov, and C.A. Angell, Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: Kinetic versus thermodynamic fragilities, J. Chem. Phys. 117 (22) (2002), pp. 10184–10192. https://doi.org/10.1063/1.1517607.
  • V. Novikov and A. Sokolov, Poisson's ratio and the fragility of glass-forming liquids, Nature 431 (7011) (2004), pp. 961–963.
  • J. Chattoraj and A. Lemaitre, Elastic signature of flow events in supercooled liquids under shear, Phys. Rev. Lett. 111 (6) (2013), pp. 066001.
  • K. Shirai, K. Watanabe, and H. Momida, First-principles study on the specific heat jump in the glass transition of silica glass and the prigogine-defay ratio. arXiv2202.09088 (2022). Available at https://arxiv.org/abs/2202.09088.
  • J.H. Gibbs and E.A. DiMarzio, Nature of the glass transition and the glassy state, J. Chem. Phys. 28 (3) (1958), pp. 373–383. https://doi.org/10.1063/1.1744141.
  • N.B. Weingartner, R. Soklaski, K.F. Kelton, and Z. Nussinov, Dramatically growing shear rigidity length scale in the supercooled glass former nizr2, Phys. Rev. B 93 (21) (2016), pp. 214201. https://doi.org/10.1103/PhysRevB.93.214201.
  • C.L. Klix, G. Maret, and P. Keim, Discontinuous shear modulus determines the glass transition temperature, Phys. Rev. X 5 (2015), pp. 041033. https://doi.org/10.1103/PhysRevX.5.041033.
  • W. Kauzmann, The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rev. 43 (2) (1948), pp. 219–256. https://doi.org/10.1021/cr60135a002.
  • T.R. Kirkpatrick, D. Thirumalai, and P.G. Wolynes, Scaling concepts for the dynamics of viscous liquids near an ideal glassy state, Phys. Rev. A 40 (2) (1989), pp. 1045–1054. https://doi.org/10.1103/PhysRevA.40.1045.
  • J.M. Brader, T. Voigtmann, M. Fuchs, R.G. Larson, and M.E. Cates, Glass rheology: From mode-coupling theory to a dynamical yield criterion, Proc. Natl. Acad. Sci. 106 (36) (2009), pp. 15186–15191. https://doi.org/10.1073/pnas.0905330106.
  • M. Baggioli, I. Kriuchevskyi, T.W. Sirk, and A. Zaccone, Plasticity in amorphous solids is mediated by topological defects in the displacement field, Phys. Rev. Lett. 127 (1) (2021), pp. 015501. https://doi.org/10.1103/PhysRevLett.127.015501.
  • L. Berthier and D.R. Reichman, Modern computational studies of the glass transition (2022). Available at https://arxiv.org/abs/2208.02206.
  • L.S. Levitov, Delocalization of vibrational modes caused by electric dipole interaction, Phys. Rev. Lett. 64 (5) (1990), pp. 547–550. https://doi.org/10.1103/PhysRevLett.64.547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.