270
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Design of a nickel–cobalt based eutectic high entropy alloy (NiCo)1.7AlCrFe with hierarchical microstructural length scales

, , & ORCID Icon
Pages 1592-1602 | Received 11 Jun 2022, Accepted 15 Jun 2023, Published online: 01 Jul 2023

References

  • E.P. George, D. Raabe, and R.O. Ritchie, High-entropy alloys. Nat Rev Mater 4 (2019), pp. 515–534. doi:10.1038/s41578-019-0121-4
  • D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts. Acta Mater. 122 (2017), pp. 448–511. doi:10.1016/j.actamat.2016.08.081
  • S. Ranganathan, J. Yeh, B. Murty, P.P. Bhattacharjee, High Entropy Alloys, Elsevier Science, Netherlands, 2019.
  • M.H. Tsai and J.W. Yeh, High-Entropy alloys: A critical review. Mater Res Lett 2 (2014), pp. 107–123. doi:10.1080/21663831.2014.912690
  • E.J. Pickering and N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev. 61 (2016), pp. 183–202. doi:10.1080/09506608.2016.1180020
  • A.V. Podolskiy, E. Schafler, E.D. Tabachnikova, M.A. Tikhonovsky, and M.J. Zehetbauer, Thermally activated deformation of nanocrystalline and coarse grained CoCrFeNiMn high entropy alloy in the temperature range 4.2–350 K. Low Temp Phys. 44 (2018), pp. 976–982. doi:10.1063/1.5052688
  • F. He, Z. Wang, Q. Wu, S. Niu, J. Li, J. Wang, and C.T. Liu, Phase separation of metastable CoCrFeNi high entropy alloy at intermediate temperatures, Scr Mater 131 (2017), pp. 42–46.
  • J.J. Licavoli, M.C. Gao, J.S. Sears, P.D. Jablonski, and J.A. Hawk, Microstructure and mechanical behavior of high-entropy alloys. J Mater Eng Perform. 24 (2015), pp. 3685–3698. doi:10.1007/s11665-015-1679-7
  • S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J Appl Phys. 109 (2011), pp. 103505. doi:10.1063/1.3587228
  • R.J. Vikram, K. Gupta, and S. Suwas, Design of a new cobalt base nano-lamellar eutectic high entropy alloy. Scr Mater. 202 (2021), pp. 113993. doi:10.1016/j.scriptamat.2021.113993
  • Y. Lu, Y. Dong, H. Jiang, Z. Wang, Z. Cao, S. Guo, T. Wang, T. Li, and P.K. Liaw, Promising properties and future trend of eutectic high entropy alloys. Scr Mater. 187 (2020), pp. 202–209. doi:10.1016/j.scriptamat.2020.06.022
  • T. Bhattacharjee, I.S. Wani, S. Sheikh, I.T. Clark, T. Okawa, S. Guo, P.P. Bhattacharjee, and N. Tsuji, Simultaneous strength-ductility enhancement of a nano-lamellar AlCoCrFeNi2.1 eutectic high entropy alloy by cryo-rolling and annealing. Sci Rep 8 (2018), pp. 1–8.
  • I.S. Wani, T. Bhattacharjee, S. Sheikh, Y. Lu, S. Chatterjee, S. Guo, P.P. Bhattacharjee, and N. Tsuji, Effect of severe cold-rolling and annealing on microstructure and mechanical properties of AlCoCrFeNi2.1 eutectic high entropy alloy. IOP Conf Ser Mater Sci Eng 194 (2017), pp. 3–8.
  • I.S. Wani, T. Bhattacharjee, S. Sheikh, Y.P. Lud, S. Chatterjee, P.P. Bhattacharjeea, S. Guo, and N. Tsujib, Ultrafine-Grained AlCoCrFeNi2.1 eutectic high-entropy alloy. Mater Res Lett 4 (2016), pp. 174–179. doi:10.1080/21663831.2016.1160451
  • Y. Zhang, J. Li, X. Wang, Y. Lu, Y. Zhou, and X. Sun, The interaction and migration of deformation twin in an eutectic high-entropy alloy AlCoCrFeNi2.1. J Mater Sci Technol. 35(5) (2019), pp. 902–906. doi:10.1016/j.jmst.2018.09.067
  • Y. Dong, Z. Yao, X. Huang, F. Du, C. Li, A. Chen, F. Wu, Y. Cheng, and Z. Zhang, Microstructure and mechanical properties of AlCoxCrFeNi3-x eutectic high-entropy-alloy system. J Alloys Compd. 823 (2020), pp. 153886. doi:10.1016/j.jallcom.2020.153886
  • Z. Yong and J.Z. Yun, Solid solution formation criteria for high entropy alloys. Mater Sci Forum 561–565 (2007), pp. 1337–1339.
  • Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Solid-Solution phase formation rules for multi-component alloys. Adv Eng Mater. 10 (2008), pp. 534–538. doi:10.1002/adem.200700240
  • Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-entropy alloy: challenges and prospects. Mater Today 19 (2016), pp. 349–362. doi:10.1016/j.mattod.2015.11.026
  • A. Inoue, T. Zhang, and T. Masumoto, Glass-forming ability of alloys. J Non-Cryst. Solids 156-158 (1993), pp. 473–480. doi:10.1016/0022-3093(93)90003-G
  • R.J. Vikram, B.S. Murty, D. Fabijanic, and S. Suwas, Insights into micro-mechanical response and texture of the additively manufactured eutectic high entropy alloy AlCoCrFeNi2.1. J Alloys Compd. 827 (2020), pp. 154034. doi:10.1016/j.jallcom.2020.154034
  • T. Li, S. Wang, W. Fan, Y. Lu, T. Wang, T. Li, and K. Peter Liaw, CALPHAD-aided design for superior thermal stability and mechanical behavior in a TiZrHfNb refractory high-entropy alloy. Acta Mater. 246 (2023), pp. 118728. doi:10.1016/j.actamat.2023.118728
  • H. Mao, H.L. Chen, and Q. Chen, Tchea1: A thermodynamic database Not limited for “high entropy” alloys. J Phase Equilib Diffus. 38 (2017), pp. 353–368. doi:10.1007/s11669-017-0570-7
  • J.P. Hirth and J. Lothe, Theory of Dislocations, John Wiley & Sons, Hoboken, 1982.
  • P.R. Dixon and D.J. Parry, Thermal softening effects in type 224 carbon steel. J Phys IV Proc. 01(C3) (1991), pp. C3-85–C3-92.
  • I. Base and J.T.M. DeHosson, Strengthening mechanisms in high entropy alloys: Fundamental issues. Scr Mater. 187 (2020), pp. 148–156. doi:10.1016/j.scriptamat.2020.06.019
  • S. Guo, C. Ng, and C.T. Liu, Anomalous solidification microstructures in Co-free AlxCrCuFeNi2 high-entropy alloys. J Alloys Compd. 557 (2013), pp. 77–81. doi:10.1016/j.jallcom.2013.01.007
  • A. Shafiei and S. Rajabi, A cobalt-rich eutectic high-entropy alloy in the system Al–Co–Cr–Fe–Ni. Appl Phys. A 125 (2019), pp. 1–11. doi:10.1007/s00339-019-3084-9
  • M.R. Rahul and G. Phanikumar, Design of a seven-component eutectic high-entropy alloy. Metall Mater Trans A 50 (2019), pp. 2594–2598. doi:10.1007/s11661-019-05210-3
  • D. Liu, P. Yu, G. Li, P.K. Liaw, and R. Liu, High-temperature high-entropy alloys AlxCo15Cr15Ni70-x based on the Al-Ni binary system. Mater Sci Eng A 724 (2018), pp. 283–288. doi:10.1016/j.msea.2018.03.058
  • X. Jin, Y. Zhou, L. Zhang, X. Dua, and B. Li, A new pseudo binary strategy to design eutectic high entropy alloys using mixing enthalpy and valence electron concentration. Mater Des. 143 (2018), pp. 49–55. doi:10.1016/j.matdes.2018.01.057
  • Y. Lu, H. Jiang, S. Guo, T. Wang, Z. Cao, and T. Li, A new strategy to design eutectic high-entropy alloys using mixing enthalpy. Intermetallics 91 (2017), pp. 124–128. doi:10.1016/j.intermet.2017.09.001
  • S. Guo and C.T. Liu, Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progr Nat Sci: Mater Int. 21 (2011), pp. 433–446. doi:10.1016/S1002-0071(12)60080-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.