395
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evolution of recrystallization texture in nickel-iron alloys: experiments and simulations

, , &
Pages 1787-1827 | Received 13 Dec 2022, Accepted 30 May 2023, Published online: 25 Jul 2023

References

  • J.G. Sevillano, P.V. Houtte, and E. Aernoudt, Large strain work hardening and textures. Prog. Mater. Sci. 25 (1980), pp. 69–134.
  • S.P. Bellier and R.D. Doherty, The structure of deformed aluminium and its recrystallization—investigations with transmission Kossel diffraction. Acta Metall. 25 (1977), pp. 521–538.
  • B. Bay, N. Hansen, D.A. Hughes, and W.D. Kuhlmann, Overview no. 96 evolution of f.c.c. deformation structures in polyslip. Acta Metall. Mater. 40 (1992), pp. 205–219.
  • R. Doherty, D. Hughes, F. Humphreys, J. Jonas, D. Jensen, M. Kassner, W. King, T. McNelley, H. McQueen, and A. Rollett, Current issues in recrystallization: a review. Mater. Sci. Eng. A. 238 (1997), pp. 219–274.
  • F.J. Humphreys and M. Hatherley, Recrystallization and Related Annealing Phenomena, 1st ed., Elsevier, United Kingdom, 1995.
  • A. Rollett, F.J. Humphreys, M. Hatherly, and G.S. Rohrer, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier Science Ltd., Netherlands, 2004.
  • P. Faivre and R.D. Doherty, Nucleation of recrystallization in compressed aluminium: studies by electron microscopy and Kikuchi diffraction. J. Mater. Sci. 14 (1979), pp. 897–919.
  • F.J. Humphreys, A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model. Acta Mater. 45 (1997), pp. 4231–4240.
  • A. Berger, P.J. Wilbrandt, F. Ernst, U. Klement, and P. Haasen, On the generation of new orientations during recrystallization: recent results on the recrystallization of tensile-deformed fcc single crystals. Prog. Mater. Sci. 32 (1988), pp. 1–95.
  • A. Berger, P.J. Wilbrandt, and P. Haasen, Development of the recrystallization texture in tensile deformed aluminium single crystals—I. HVEM observations. Acta Metall. 31 (1983), pp. 1433–1443.
  • H.J. Bunge, The basic concepts of texture investigation in polycrystalline materials. Steel Res. Int. 62 (1991), pp. 530–541.
  • O. Engler, H.E. Vatne, and E. Nes, The roles of oriented nucleation and oriented growth on recrystallization textures in commercial purity aluminium. Mater. Sci. Eng., A. 205 (1996), pp. 187–198.
  • O. Engler, Influence of particle stimulated nucleation on the recrystallization textures in cold deformed Al-alloys Part II-Modeling of recrystallization textures. Scr. Mater. 37 (1997), pp. 1675–1683.
  • O. Engler and H.E. Vatne, Modeling the recrystallization textures of aluminum alloys after hot deformation. JOM. 50 (1998), pp. 23–27.
  • J. Liu, M. Mato, and R.D. Doherty, Shear banding in rolled dispersion hardened AlMg2Si alloys. Scr. Metall. 23 (1989), pp. 1811–1816.
  • A. Duckham, O. Engler, and R.D. Knutsen, Moderation of the recrystallization texture by nucleation at copper-type shear bands in Al-1Mg. Acta Mater. 50 (2002), pp. 2881–2893.
  • F.J. Humphreys, Local lattice rotations at second phase particles in deformed metals. Acta Metall. 27 (1979), pp. 1801–1814.
  • F.J. Humphreys and P.N. Kalu, Dislocation-particle interactions during high temperature deformation of two-phase aluminium alloys. Acta Metall. 35 (1987), pp. 2815–2829.
  • F.J. Humphreys and M.G. Ardakani, The deformation of particle-containing aluminium single crystals. Acta Metall. 42 (1994), pp. 749–761.
  • W.B. Hutchinson, Recrystallisation textures in iron resulting from nucleation at grain boundaries. Acta Metall. 37 (1989), pp. 1047–1056.
  • D. Raabe and K. Lücke, Textures of ferritic stainless steels. Mater. Sci. Technol. 9 (1993), pp. 302–312.
  • I. Samajdar and R.D. Doherty, Grain boundary misorientation in DC-cast aluminum alloy. Scr. Metall. et Mater. 31 (1994), pp. 527–530.
  • R.D. Doherty and R.W. Cahn, Nucleation of new grains in recrystallization of cold-worked metals. J. Less-Common Met. 28 (1972), pp. 279–296.
  • F.J. Humphreys and M. Ferry, Applications of electron backscattered diffraction to studies of annealing of deformed metals. Mater. Sci. Technol. 13 (1997), pp. 85–90.
  • O. Engler, Deformation and texture of copper–manganese alloys. Acta Mater. 48 (2000), pp. 4827–4840.
  • R.K. Ray, Rolling textures of pure nickel, nickel-iron and nickel-cobalt alloys. Acta Metall. et Mater. 43 (1995), pp. 3861–3872.
  • R. Quey, G.H. Fan, Y. Zhang, and D.J. Jensen, Importance of deformation-induced local orientation distributions for nucleation of recrystallisation. Acta Mater. 210 (2021), p. 116808.
  • C. Carter and S. Holmes, The stacking-fault energy of nickel. Philos. Mag. 35 (1977), pp. 1161–1172.
  • G. Shankar, R. Madhavan, R. Kumar, B. Sahoo, R.K. Ray, and S. Suwas, Micro-mechanism of evolution of microstructure and texture in Ni-Fe alloys. Mater. 13 (2020), p. 100811.
  • O. Engler, Recrystallisation textures in copper-manganese alloys. Acta Mater. 49 (2001), pp. 1237–1247.
  • P.C.J. Gallagher, The influence of alloying, temperature, and related effects on the stacking fault energy. Metall. Mater. Trans. B. 1 (1970), pp. 2429–2461.
  • D.P. Rodionov, I.V. Gervaseva, Y.V. Khlebnikova, V.A. Kazantsev, N.I. Vinogradova, and V.A. Sazonova, Effect of recrystallization annealing on the formation of a perfect cube texture in FCC nickel alloys. Phys. Met. Metallogr. 111 (2011), pp. 601–611.
  • R. Hielscher and H. Schaeben, A novel pole figure inversion method: specification of the MTEX algorithm. J. Appl. Crystallogr. 41 (2008), pp. 1024–1037.
  • F. Bachmann, R. Hielscher, and H. Schaeben, Texture analysis with MTEX – free and open source software toolbox. Solid State Phenom 160 (2010), pp. 63–68.
  • D. Raabe and R.C. Becker, Coupling of a crystal plasticity finite-element model with a probabilistic cellular automaton for simulating primary static recrystallization in aluminium. Model. Simul. Mat. Sci. Eng. 8 (2000), pp. 445–462.
  • F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Mater. 58 (2010), pp. 1152–1211.
  • B. Radhakrishnan, G.B. Sharma, H. Weiland, and P. Baggethun, Simulations of deformation and recrystallization of single crystals of aluminium containing hard particles. Model. Simul. Mat. Sci. Eng. 8 (2000), pp. 737–750.
  • M. Bernacki, R.E. Logé, and T. Coupez, Level set framework for the finite-element modelling of recrystallization and grain growth in polycrystalline materials. Scripta Mater. 64 (2011), pp. 525–528.
  • P.J. Hurley and F.J. Humphreys, Modelling the recrystallization of single-phase aluminium. Acta Mater. 51 (2003), pp. 3779–3793.
  • M. Bernacki, H. Resk, T. Coupez, and R.E. Logé, Finite element model of primary recrystallization in polycrystalline aggregates using a level set framework. Model. Simul. Mat. Sci. Eng. 17 (2009), pp. 1–22.
  • F.J. Humphreys, Modelling mechanisms and microstructures of recrystallisation. Mater. Sci. Technol. 8 (1992a), pp. 135–144.
  • G. Gottstein and L.S. Shvindlerman, Grain Boundary Migration in Metals, CRC Press, Boca Raton, 2009.
  • H.J. Bunge and U. Köhler, Model calculations of primary recrystallization textures. Scr. Metall. et Mater. 27 (1992), pp. 1539–1543.
  • M. Crumbach, M. Goerdeler, and G. Gottstein, Modelling of recrystallisation textures in aluminium alloys: I. Model set-up and integration. Acta Mater. 54 (2006), pp. 3275–3289.
  • G. Ibe, W. Dietz, A.C. Fraker, and K. Lücke, Preferred orientations during recrystallization of strained single crystals of high purity aluminium. Int. J. Mater. Res. 61 (1970), pp. 498–507.
  • D.A. Molodov, in G. Gottstein and D.A. Molodov, eds., Recrystallization and Grain Growth, Vol. 1, Springer Verlag, Aachen, 2001, p. 21.
  • G. Gottstein, L.S. Shvindlerman, D.A. Molodov, and U. Czubayko, in P.M. Duxbury and T.J. Pence, eds., Plenum Press, New York, 1997, p. 109.
  • A.D. Rollett, Overview of modeling and simulation of recrystallization. Prog. Mater. Sci. 42 (1997), pp. 79–99.
  • D. Raabe, F. Roters, F. Barlat, and L.Q. Chen, Continuum Scale Simulation of Engineering Materials, WILEY-VCH, Weinheim, 2004b.
  • V. Marx, D. Raabe, O. Engler, and G. Gottstein, Simulation of the texture evolution during annealing of cold rolled BCC and FCC metals using a cellular automation approach. Textures Microstruct. 28 (1997), pp. 211–218.
  • D. Raabe, Mesoscale simulation of recrystallization textures and microstructures. Adv. Eng. Mater. 3 (2001), pp. 745–752.
  • K.G.F. Janssens, Random grid, three-dimensional, space-time coupled cellular automata for the simulation of recrystallization and grain growth. Model. Simul. Mat. Sci. Eng. 11 (2003), pp. 157–171.
  • A.D. Rollett, M.J. Luton, and D.J. Srolovitz, Microstructural simulation of dynamic recrystallization. Acta Metall. 40 (1992), pp. 43–55.
  • F.J. Humphreys, Network model for recovery and recrystallization. Scr. Metall. 27 (1992b), pp. 1557–1562.
  • D. Kinderlehrer, I. Livshits, G.S. Rohrer, S. Taasan, and P. Yu, Mesoscale simulation of the evolution of the grain boundary character distribution. Mater. Sci. Forum. 467-470 (2004), pp. 1063–1068.
  • P. Mukhopadhyay, M. Loeck, and G. Gottstein, A cellular operator model for the simulation of static recrystallization. Acta Mater. 55 (2007), pp. 551–564.
  • M. Kühbach, L.A. Barrales-Mora, and G. Gottstein, A massively parallel cellular automaton for the simulation of recrystallization. Model. Simul. Mat. Sci. Eng. 22 (2014), p. 075016.
  • L.A. Barrales-Mora, V. Mohles, P.J. Konijnenberg, and D.A. Molodov, A novel implementation for the simulation of 2-D grain growth with consideration to external energetic fields. Comput. Mater. Sci. 39 (2007), pp. 160–165.
  • C. Haase, M. Kühbach, L.A. Barrales-Mora, S.L. Wong, F. Roters, D.A. Molodov, and G. Gottstein, Recrystallization behavior of a high-manganese steel: experiments and simulations. Acta Mater. 100 (2015), pp. 155–168.
  • T. Seymour, P. Frankel, L. Balogh, T. Ungár, S.P. Thompson, D. Jädernäs, J. Romero, L. Hallstadius, M.R. Daymond, G. Ribárikch, and M. Preuss, Evolution of dislocation structure in neutron irradiated Zircaloy-2 studied by synchrotron x-ray diffraction peak profile analysis. Acta Mater. 126 (2017), pp. 102–113.
  • L.A. Barrales-Mora, Y. Lü, and D.A. Molodov, Experimental determination and simulation of annealing textures in cold rolled TWIP and TRIP steels. Steel Res. Int. 82 (2011), pp. 119–126.
  • C. Haase and L.A. Barrales-Mora, Influence of deformation and annealing twinning on the microstructure and texture evolution of face-centered cubic high-entropy alloys. Acta Mater. 150 (2018), pp. 88–103.
  • G. Shankar, S. Raguraman, L.A. Barrales-Mora, and S. Suwas, Development of recrystallization texture in commercially pure titanium: experiments and simulation. JOM. 72 (2020), pp. 4559–4573.
  • V. Randle, G.S. Rohrer, H.M. Miller, M. Coleman, and G.T. Owen, Five-parameter grain boundary distribution of commercially grain boundary engineered nickel and copper. Acta mater. 56 (2008), pp. 2363–2373.
  • P. Davies and V. Randle, Grain boundary engineering and the role of the interfacial plane. Mater. Sci. Technol. 17 (2001), pp. 615–626.
  • D.L. Olmsted, S.M. Foiles, and E.A. Holm, Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater. 57 (2009), pp. 3694–3703.
  • G. Gottstein, D.A. Molodov, L.S. Shvindlerman, D.J. Srolovitz, and M. Winning, Grain boundary migration: misorientation dependence. Curr. Opin. Solid. State. Mater. Sci. 5 (2001), pp. 9–14.
  • D. Prokoshkina, V.A. Esin, G. Wilde, and S.V. Divinski, Grain boundary width, energy and self-diffusion in nickel: effect of material purity. Acta Mater. 61 (2013), pp. 5188–5197.
  • J. Li, S.J. Dillon, and G.S. Rohrer, Relative grain boundary area and energy distributions in nickel. Acta Mater. 57 (2009), pp. 4304–4311.
  • G.S. Rohrer, Grain boundary energy anisotropy: a review. J. Mater. Sci. 46 (2011), pp. 5881–5895.
  • P. Davies and V. Randle, Grain boundary engineering and the role of the interfacial plane. Mater. Sci. Technol. 17 (2001), pp. 615–626.
  • G.J. Wang and V. Vitek, Relationships between grain boundary structure and energy. Acta Metall. 34 (1986), pp. 951–960.
  • V. Randle, An investigation of grain-boundary plane crystallography in polycrystalline nickel. J. Mater. Sci. 30 (1995), pp. 3983–3988.
  • K.S. Jyotheender, A. Gupta, and C. Srivastava, Grain boundary engineering in Ni-carbon nanotube composite coatings and its effect on the corrosion behaviour of the coatings. Mater. 9 (2020), p. 100617.
  • A. Ma and F. Roters, A constitutive model for FCC single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals. Acta Mater. 52 (2004), pp. 3603–3612.
  • B. Peeters, M. Seefeldt, S.R. Kalidindi, P.V. Houtte, and E. Aernoudt, The incorporation of dislocation sheets into a model for plastic deformation of B.C.C. polycrystals and its influence on r-values. Mater. Sci. Eng. A. 319-321 (2001), pp. 188–191.
  • P.A. Beck and P.R. Sperry, Strain induced grain boundary migration in high purity aluminum. Appl. Phys. 21 (1950), pp. 150–152.
  • D. Wolf, Structure and energy of general grain boundaries in bcc metals. Appl. Phys. 69 (1991), pp. 185–196.
  • A.P. Sutton and R.W. Balluffi (eds.), Interfaces in Crystalline Materials, Clarendon Oxford, 1995.
  • D.G. Bandon, The structure of high-angle grain boundaries. Acta Metall. 14 (1966), pp. 1479–1484.
  • H. Paul, J.H. Driver, C. Maurice, and A. Piatkowski, Recrystallization mechanisms of low stacking fault energy metals as characterized on model silver single crystals. Acta Mater. 55 (2007), pp. 833–847.
  • J. Hirsch, K. Lücke, and M. Hatherly, Overview No, 76: mechanism of deformation and development of rolling textures in polycrystalline F.C.C. Metals-III. The influence of slip inhomogeneities and twinning. Acta Metall. 36 (1988), pp. 2905–2927.
  • H.C.H. Carpenter and S. Tamura, The formation of twinned metallic crystals. Proc. R. Soc. Lond. 113A (1926), pp. 161–182.
  • H. Gleiter, The formation of annealing twins. Acta Metall. 17 (1969), pp. 1421–1428.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.