231
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Accelerating the precipitation kinetics of nano-sized T1 and S’ phases in Al-Cu-Li alloys by hot-deformation and creep-aging

, ORCID Icon, , , , , , & show all
Pages 1927-1967 | Received 23 Oct 2022, Accepted 21 May 2023, Published online: 07 Aug 2023

References

  • T. Dursun and C. Soutis, Recent developments in advanced aircraft aluminium alloys. Mater. Des 56 (2014), pp. 862–871. doi:10.1016/j.matdes.2013.12.002.
  • J.W. Sun, G.H. Wu, L. Zhang, X.L. Zhang, L.L. Liu, and J.S. Zhang, Microstructure characteristics of an ultra-high strength extruded Al-4.7Cu–1Li-0.5Mg-0.1Zr–1Zn alloy during heat treatment. J. Alloys Compd 813 (2020), pp. 152216. doi:10.1016/j.jallcom.2019.152216.
  • X.M. Wang, G.A. Li, J.T. Jiang, W.Z. Shao, and L. Zhen, Influence of Mg content on ageing precipitation behavior of Al-Cu-Li-x alloys. Mater. Sci. Eng. A 742 (2019), pp. 138–149. doi:10.1016/j.msea.2018.11.015.
  • Z.Z. Liu, J.F. Li, D.Y. Liu, Y.L. Ma, Y. Du, Y.L. Chen, X.H. Zhang, R.K. Gupta, X.B. Chen, and R.F. Zhang, Sluggish precipitation strengthening in Al–Li alloy with a high concentration of Mg. J. Mater. Res. Technol 11 (2021), pp. 1806–1815. doi:10.1016/j.jmrt.2021.02.037.
  • J.S. Miao, S. Sutton, and A.A. Luo, Microstructure and hot deformation behavior of a new aluminum–lithium–copper based AA2070 alloy. Mater. Sci. Eng. A 777 (2020), pp. 139048. doi:10.1016/j.msea.2020.139048.
  • S.J. Li, B.W. Wei, C. Yu, Y. Li, G.M. Xu, and Y. Li, Evolution of microstructure and properties during homogenization of the novel Al–Li alloy fabricated by electromagnetic oscillation twin-roll casting. J. Mater. Res. Technol 9(3) (2020), pp. 3304–3317. doi:10.1016/j.jmrt.2020.01.025.
  • D.Y. Liu and J.X. Wang, The effect of Ag element on the microstructure characteristic evolution of an Al-Cu-Li-Mg alloy. J. Mater. Res. Technol 9(5) (2020), pp. 11121–11134. doi:10.1016/j.jmrt.2020.08.021.
  • A.A. El-Aty, Y. Xu, X.Z. Guo, S.H. Zhang, Y. Ma, and D.Y. Chen, Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: a review. J. Adv. Res 10 (2018), pp. 49–67. doi:10.1016/j.jare.2017.12.004.
  • E. Gumbmann, W. Lefebvre, F. De Geuser, C. Sigli, and A. Deschamps, The effect of minor solute additions on the precipitation path of an Al Cu Li alloy. Acta Materi 115 (2016), pp. 104–114. doi:10.1016/j.actamat.2016.05.050.
  • B. Jiang, H.S. Wang, D.Q. Yi, Y. Tian, F.H. Shen, B. Wang, H.Q. Liu, and Z. Hu, Effect of Ag addition on the age hardening and precipitation behavior in an Al-Cu-Li-Mg-Zn-Mn-Zr alloy. Mater. Charact 162 (2020), pp. 110184. doi:10.1016/j.matchar.2020.110184.
  • E. Gariboldi, P. Bassani, M. Albu, and F. Hofer, Presence of silver in the strengthening particles of an Al-Cu-Mg-Si-Zr-Ti-Ag alloy during severe overaging and creep. Acta Mater. 125 (2017), pp. 50–57. doi:10.1016/j.actamat.2016.11.056.
  • Y. Yang, G.A. He, Y. Liu, K. Li, W.K. Wu, and C. Huang, Quantitative contribution of T1 phase to the strength of Al-Cu-Li alloys. J. Mater. Sci 56 (2021), pp. 18368–18390. doi:10.1007/s10853-021-06432-w.
  • B. Decreus, A. Deschamps, F. De Geuser, P. Donnadieu, C. Sigli, and M. Weyland, The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys. Acta Mater. 61(6) (2013), pp. 2207–2218. doi:10.1016/j.actamat.2012.12.041.
  • Z. Gao, J.H. Chen, S.Y. Duan, X.B. Yang, and C.L. Wu, Complex precipitation sequences of Al-Cu-Li-(Mg) alloys characterized in relation to thermal ageing processes. Acta Metall. Sin. (Engl. Lett) 29 (2016), pp. 94–103. doi:10.1007/s40195-016-0366-5.
  • C. Zhou, L.H. Zhan, H. Li, F. Chen, G.R. Liu, and D.Y. Yan, Mechanism of an acceleration in T1 precipitation kinetics in an Al-Cu-Li alloy by electropulsing. Vacuum 194 (2021), pp. 110558. doi:10.1016/j.vacuum.2021.110558.
  • H. Xiao, S.S. Jiang, C.C. Shi, K.F. Zhang, Z. Lu, and J.F. Jiang, Study on the microstructure evolution and mechanical properties of an Al-Mg-Li alloy aged by electropulsing assisted ageing processing. Mater. Sci. and Eng. A 756 (2019), pp. 442–454. doi:10.1016/j.msea.2019.04.049.
  • B.I. Rodgers and P.B. Prangnell, Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195. Acta Mater. 108 (2016), pp. 55–67. doi:10.1016/j.actamat.2016.02.017.
  • B.X. Xie, L. Huang, J.H. Xu, H.L. Su, H.P. Zhang, Y.K. Xu, J.J. Li, and Y. Wang, Effect of the aging process and pre-deformation on the precipitated phase and mechanical properties of 2195 Al–Li alloy. Mater. Sci. and Eng. A 832 (2022), pp. 142394. doi:10.1016/j.msea.2021.142394.
  • J.Q. Han, H.M. Wang, A.J. Xu, and K.M. Niu, Enhanced matrix precipitation of T1 (Al2 Cu Li) phase in AA2055 Al–Li alloy during stress aging process. Mater. Sci. and Eng. A 827 (2021), pp. 142057. doi:10.1016/j.msea.2021.142057.
  • H.Y. Li, W. Kang, and X.C. Lu, Effect of Age-forming on microstructure, mechanical and corrosion properties of a novel Al-Li alloy. J. Alloys Compd 640 (2015), pp. 210–218. doi:10.1016/j.jallcom.2015.03.212.
  • J. Zhang, Z.D. Li, F.S. Xu, and C. Huang, Regulating effect of pre-stretching degree on the creep aging process of Al-Cu-Li alloy. Mater. Sci. Eng. A 763 (2019), pp. 138157. doi:10.1016/j.msea.2019.138157.
  • E. Gumbmann, F. De Geuser, C. Sigli, A. Deschamps, and I.o. Mg, Influence of Mg, Ag and Zn minor solute additions on the precipitation kinetics and strengthening of an Al-Cu-Li alloy. Acta Mater. 133 (2017), pp. 172–185. doi:10.1016/j.actamat.2017.05.029.
  • L. Ou, Z.Q. Zheng, Y.F. Nie, and H.G. Jian, Hot deformation behavior of 2060 alloy. J. Alloys Compd 648 (2015), pp. 681–689. doi:10.1016/j.jallcom.2015.07.027.
  • S. Wei, J. Kim, and C.C. Tasan, In-situ investigation of plasticity in a Ti-Al-V-Fe (α+β) alloy: slip mechanisms, strain localization, and partitioning. Int. J. Plast 148 (2022), pp. 103131. doi:10.1016/j.ijplas.2021.103131.
  • W.G. Feather, S. Ghorbanpour, D.J. Savage, M. Ardeljan, M. Jahedi, B.A. McWilliams, N. Gupta, C.C. Xiang, S.C. Vogel, and M. Knezevic, Mechanical response, twinning, and texture evolution of WE43 magnesium-rare earth alloy as a function of strain rate: experiments and multi-level crystal plasticity modeling. Int. J. Plast 120 (2019), pp. 180–204. doi:10.1016/j.ijplas.2019.04.019.
  • H.W. Li, X.X. Sun, and H. Yang, A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys. Int. J. Plast 87 (2016), pp. 154–180. doi:10.1016/j.ijplas.2016.09.008.
  • B. Chen, J. Jiang, and F.P.E. Dunne, Is stored energy density the primary meso-scale mechanistic driver for fatigue crack nucleation? Int. J. Plast 101 (2018), pp. 213–229. doi:10.1016/j.ijplas.2017.11.005.
  • W.D. Musinski and D.L. McDowell, Simulating the effect of grain boundaries on microstructurally small fatigue crack growth from a focused ion beam notch through a three-dimensional array of grains. Acta Mater. 112 (2016), pp. 20–39. doi:10.1016/j.actamat.2016.04.006.
  • J. Tang, F.L. Jiang, C.H. Luo, G.W. Bo, K.Y. Chen, J. Teng, D.F. Fu, and H. Zhang, Integrated physically based modeling for the multiple static softening mechanisms following multi-stage hot deformation in Al-Zn-Mg-Cu alloys. Int. J. Plast 134 (2020), pp. 102809. doi:10.1016/j.ijplas.2020.102809.
  • M. Basirat, T. Shrestha, G.P. Potirniche, I. Charit, and K. Rink, A study of the creep behavior of modified 9Cr–1Mo steel using continuum-damage modeling. Int. J. Plast 37 (2012), pp. 95–107. doi:10.1016/j.ijplas.2012.04.004.
  • X.H. Yang, J.S. Wang, M.S. Zhang, C. Zhang, C.P. Xue, Y.L. Guo, and X.G. Liu, Achieving high strength and ductility of Al-Cu-Li alloy via creep aging treatment with different pre-strain levels. Mater. Today Commun 29 (2021), pp. 102898. doi:10.1016/j.mtcomm.2021.102898.
  • Y.C. Lin, Y.C. Xia, Y.Q. Jiang, H.M. Zhou, and L.T. Li, Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater. Sci. Eng. A 565 (2013), pp. 420–429. doi:10.1016/j.msea.2012.12.058.
  • S.S. Satheesh Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah, Work hardening characteristics and microstructural evolution during hot deformation of a nickel superalloy at moderate strain rates. J. Alloys Compd 709 (2017), pp. 394–409. doi:10.1016/j.jallcom.2017.03.158.
  • J.A. Muñoz, R.E. Bolmaro, A.M.J. Jr, A. Zhilyaev, and J.M. Cabrera, Prediction of generation of high- and Low-angle grain boundaries (HAGB and LAGB) during severe plastic deformation. Metall. Mater. Trans. A 51 (2020), pp. 4674–4684. doi:10.1007/s11661-020-05873-3.
  • F. Dong, Y.P. Yi, S.Q. Huang, B.X. Wang, H.L. He, K. Huang, and C.G. Wang, Cryogenic formability and deformation behavior of 2060 Al–Li alloys with water-quenched and T4 aged temper. Mater. Sci. Eng. A 823 (2021), pp. 141722. doi:10.1016/j.msea.2021.141722.
  • X. Lu, F.P.E. Dunne, and Y.L. Xu, A crystal plasticity investigation of slip system interaction, GND density and stored energy in non-proportional fatigue in nickel-based superalloy. Int. J. Fatigue 139 (2020), pp. 105782. doi:10.1016/j.ijfatigue.2020.105782.
  • S. Birosca, G. Liu, R.G. Ding, J. Jiang, T. Simm, C. Deen, and M. Whittaker, The dislocation behaviour and GND development in a nickel based superalloy during creep. Int. J. Plasticity 118 (2019), pp. 252–268. doi:10.1016/j.ijplas.2019.02.015.
  • X.M. Wang, W.Z. Shao, J.T. Jiang, G.A. Li, X.Y. Wang, and L. Zhen, Quantitative analysis of the influences of pre-treatments on the microstructure evolution and mechanical properties during artificial ageing of an Al-Cu-Li-Mg-Ag alloy. Mater. Sci. Eng. A 782 (2020), pp. 139253. doi:10.1016/j.msea.2020.139253.
  • H. Huang, H. Liu, K.X. Ren, J.H. Shi, J. Ju, H.R. Wu, J.H. Jiang, A.B. Ma, F. Xue, J. Bai, and Y.F. Zheng, Improvement of ductility and work hardening ability in a high strength Zn-Mg-Y alloy via micron-sized and submicron-sized YZn12 particles. J. Alloys Compd 877 (2021), pp. 160268. doi:10.1016/j.jallcom.2021.160268.
  • J. Jiang, T.B. Britton, and A.J. Wilkinson, Evolution of dislocation density distributions in copper during tensile deformation. Acta Mater. 61(19) (2013), pp. 7227–7239. doi:10.1016/j.actamat.2013.08.027.
  • Y. Li, Z.S. Shi, J.G. Lin, Y.L. Yang, Q. Rong, B.M. Huang, T.F. Chung, C.S. Tsao, J.R. Yang, and D.S. Balint, A unified constitutive model for asymmetric tension and compression creep-ageing behaviour of naturally aged Al-Cu-Li alloy. Int. J. Plast 89 (2017), pp. 130–149. doi:10.1016/j.ijplas.2016.11.007.
  • L.T. Smith, Y. Su, S. Xu, A. Hunter, and I.J. Beyerlein, The effect of local chemical ordering on Frank-Read source activation in a refractory multi-principal element alloy. Int. J. Plast. 134 (2020), pp. 102850.
  • A. Deschamps, B. Decreus, F. De Geuser, T. Dorin, and M. Weyland, The influence of precipitation on plastic deformation of Al–Cu–Li alloys. Acta Mater. 61(11) (2013), pp. 4010–4021. doi:10.1016/j.actamat.2013.03.015.
  • P.P. Ma, L.H. Zhan, C.H. Liu, J.S. Yang, K.L. Chen, and Z.B. Huang, Strong stress-level dependence of creep-ageing behavior in Al–Cu–Li alloy. Mater. Sci. Eng. A 802 (2021), pp. 140381. doi:10.1016/j.msea.2020.140381.
  • S.Y. Duan, C.L. Wu, Z. Gao, L.M. Cha, T.W. Fan, and J.H. Chen, Interfacial structure evolution of the growing composite precipitates in Al-Cu-Li alloys. Acta Mater. 129 (2017), pp. 352–360. doi:10.1016/j.actamat.2017.03.018.
  • V. Araullo-Peters, B. Gault, F. De Geuser, A. Deschamps, and J.M. Cairney, Microstructural evolution during ageing of Al–Cu–Li–x alloys. Acta Mater. 66 (2014), pp. 199–208. doi:10.1016/j.actamat.2013.12.001.
  • S.L. Nikitin, O.E. Osintsev, and S.Y. Betsofen, Effect of heat treatment conditions on the structure and mechanical properties of a cast Al–Li–Cu aluminum alloy. Russ. Metall 2010 (2010), pp. 1041–1045. doi:10.1134/S003602951011008X.
  • W.A. Cassada, G.J. Shiflet, and E.A. Starke, Mechanism of Al2CuLi (T1) nucleation and growth. Metall. Mater. Trans. A 22 (1991), pp. 287–297. doi:10.1007/BF02656798.
  • Z. Gao, J.Z. Liu, J.H. Chen, S.Y. Duan, Z.R. Liu, W.Q. Ming, and C.L. Wu, Formation mechanism of precipitate T1 in AlCuLi alloys. J. Alloys Compd 624 (2015), pp. 22–26. doi:10.1016/j.jallcom.2014.10.208.
  • Y.J. Deng, J.H. Bai, X.D. Wu, G.J. Huang, L.F. Cao, and L. Huang, Investigation on formation mechanism of T1 precipitate in an Al-Cu-Li alloy. J. Alloys Compd 723 (2017), pp. 661–666. doi:10.1016/j.jallcom.2017.06.198.
  • S. Wang, X.H. Yang, J.S. Wang, C. Zhang, and C.P. Xue, Identifying the crystal structure of T1 precipitates in Al-Li-Cu alloys by ab initio calculations and HAADF-STEM imaging. J. Mater. Sci. & Technol 133 (2023), pp. 41–57. doi:10.1016/j.jmst.2022.05.056.
  • S. Wang, C.P. Xue, X.H. Yang, G.Y. Tian, and J.S. Wang, Heterogeneous nucleation of T1 precipitates in solid solution of Al-Cu-Li alloys from Ag-rich structures: an ab initio study. Scr. Mater 225 (2023), pp. 115191. doi:10.1016/j.scriptamat.2022.115191.
  • M. Murayama and K. Hono, Three dimensional atom probe analysis of pre-precipitate clustering in an Al-Cu-Mg-Ag alloy. Scr. mater 38(8) (1998), pp. 1315–1319. doi:10.1016/S1359-6462(98)00027-X.
  • M. Murayama and K. Hono, Role of Ag and Mg on precipitation of T1 phase in an Al-Cu-Li-Mg-Ag alloy. Scr. Mater 44(4) (2001), pp. 701–706. doi:10.1016/S1359-6462(00)00651-5.
  • S.Y. Li, S.Y. Duan, W.Q. Ming, C.L. Wu, and J.H. Chen, Genetic structural phase evolution from Li-containing S-like phase precipitates towards S-phase in AlCuLiMg alloys. Acta Mater. 233 (2022), pp. 117997. doi:10.1016/j.actamat.2022.117997.
  • T. Dorin, F. De Geuser, W. Lefebvre, C. Sigli, and A. Deschamps, Strengthening mechanisms of T1 precipitates and their influence on the plasticity of an Al–Cu–Li alloy. Mater. Sci. Eng. A 605 (2014), pp. 119–126. doi:10.1016/j.msea.2014.03.024.
  • T. Dorin, A. Deschamps, F. De Geuser, and C. Sigli, Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy. Acta Mater. 75 (2014), pp. 134–146. http://doi.org/10.1016/j.actamat.2014.04.046.
  • J.F. Li, P.L. Liu, Y.L. Chen, X.H. Zhang, and Z.Q. Zheng, Microstructure and mechanical properties of Mg, Ag and Zn multi-microalloyed Al–(3.2–3.8) Cu–(1.0–1.4) Li alloys. Trans. Nonferrous Met. Soc. China 25(7) (2015), pp. 2103–2112. doi:10.1016/S1003-6326(15)63821-3.
  • Z.Y. Ma, L.H. Zhan, C.H. Liu, L.Z. Xu, Y.Q. Xu, P.P. Ma, and J.J. Li, Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al-Cu alloy: experiments and modeling. Int. J. Plast 110 (2018), pp. 183–201. doi:10.1016/j.ijplas.2018.07.001.
  • Z.Q. Feng, Y.Q. Yang, B. Huang, X. Luo, M.H. Li, Y.X. Chen, M. Han, M.S. Fu, and J.G. Ru, HRTEM and HAADF-STEM tomography investigation of the heterogeneously formed S (Al2CuMg) precipitates in Al–Cu–Mg alloy. Philos. Mag 93(15) (2013), pp. 1843–1858. https://www.tandfonline.com/loi/tphm20.
  • H. Djaaboube and D. Thabet-Khireddine, TEM diffraction study of Al2CuMg (S′/S) precipitation in an Al–Li–Cu–Mg(Zr) alloy. Philos. Mag 92 (2012), pp. 1876–1889. doi:10.1080/14786435.2012.659288.
  • X.L. Zhang, L. Zhang, G.H. Wu, W.C. Liu, C.C. Shi, J.S. Tao, and J.W. Sun, Microstructural evolution and mechanical properties of cast Al-2Li-2Cu-0.5Mg-0.2Zr alloy during heat treatment. Mater. Charact 132 (2017), pp. 312–319. doi:10.1016/j.matchar.2017.08.027.
  • H.H. Jo and K.-I. Hirano, Precipitation processes in Al-Cu-Li alloy studied by DSC. Mater. Sci. Forum (1987), pp. 377–382. doi:10.4028/www.scientific.net/MSF.13-14.377.
  • F. Dong, S.Q. Huang, Y.P. Yi, H.L. He, K. Huang, S.L. Gao, Y.Z. Jia, and W.W. Yu, Effect of increased stretching deformation at cryogenic temperature on the precipitation behavior and mechanical properties of 2060 Al–Li alloy. Mater. Sci. Eng. A 834 (2022), pp. 142585. doi:10.1016/j.msea.2021.142585.
  • P.H. Lv, R.C. Wang, C.Q. Peng, Z.Y. Cai, Y. Feng, and X.F. Wang, Precipitation and mechanical properties for rapidly solidified Al-Cu-Li alloy: effect of pre-rolling. J. Alloys Compd 929 (2022), pp. 167369. doi:10.1016/j.jallcom.2022.167369.
  • H.Y. Li, Y. Tang, Z.D. Zeng, Z.Q. Zheng, and F. Zheng, Effect of ageing time on strength and microstructures of an Al–Cu–Li–Zn–Mg–Mn–Zr alloy. Mater. Sci. Eng. A 498(1-2) (2008), pp. 314–320. doi:10.1016/j.msea.2008.08.001.
  • H. Ovri and E.T. Lilleodden, New insights into plastic instability in precipitation strengthened Al–Li alloys. Acta Mater. 89 (2015), pp. 88–97. doi:10.1016/j.actamat.2015.01.065.
  • C.H. Wu, H. Li, T.J. Bian, C. Lei, and L.W. Zhang, Natural aging behaviors of Al-Cu-Li alloy: PLC effect, properties and microstructure evolution. Mater. Charact 184 (2022), pp. 111694. doi:10.1016/j.matchar.2021.111694.
  • F. Liu, Z.Y. Liu, M. Liu, Y.C. Hu, Y. Chen, and S. Bai, Analysis of empirical relation between microstructure, texture evolution and fatigue properties of an Al-Cu-Li alloy during different pre-deformation processes. Mater. Sci. Eng. A 726 (2018), pp. 309–319. doi:10.1016/j.msea.2018.04.047.
  • N. Hansen, Hall–Petch relation and boundary strengthening. Scripta Mater (2004), pp. 801–806. doi:10.1016/j.scriptamat.2004.06.002.
  • S. Bai, T.T. Huang, H. Xu, Z.Y. Liu, J. Wang, and X.L. Yi, Effects of small Er addition on the microstructural evolution and strength properties of an Al–Cu–Mg–Ag alloy aged at 200°C. Mater. Sci. Eng. A 766 (2019), pp. 138351. doi:10.1016/j.msea.2019.138351.
  • C.S. Zhang, M.F. Liu, Z.J. Meng, Q.Y. Zhang, G.Q. Zhao, L. Chen, H. Zhang, and J. Wang, Microstructure evolution and precipitation characteristics of spray-formed and subsequently extruded 2195 Al-Li alloy plate during solution and aging process. J. Mater. Process. Technol 283 (2020), pp. 116718. doi:10.1016/j.jmatprotec.2020.116718.
  • Q.H. Fang, Z. Huang, L. Li, Z.W. Huang, B. Liu, Y. Liu, J. Li, and P.K. Liaw, Modeling the competition between solid solution and precipitate strengthening of alloys in a 3D space. Int. J. Plast 149 (2022), pp. 103152. doi:10.1016/j.ijplas.2021.103152.
  • T. Philippe and P.W. Voorhees, Ostwald ripening in multicomponent alloys. Acta Mater. 61(11) (2013), pp. 4237–4244. doi:10.1016/j.actamat.2013.03.049.
  • L.Q. Cui, C.H. Yu, S. Jiang, X.Y. Sun, R.L. Peng, J.E. Lundgren, and J. Moverare, A new approach for determining GND and SSD densities based on indentation size effect: an application to additive-manufactured hastelloy X. J. Mater. Sci. & Technol 96 (2022), pp. 295–307. doi:10.1016/j.jmst.2021.05.005.
  • M.J. Starink, P. Wang, I. Sinclair, and P.J. Gregson, Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. modelling of yield strength. Acta Mater. 47(14) (1999), pp. 3855–3868. doi:10.1016/S1359-6454(99)00228-1.
  • P. Chen, X.Z. Fan, Q.B. Yang, Z.Q. Zhang, Z.H. Jia, and Q. Liu, Creep behavior and microstructural evolution of 8030 aluminum alloys compressed at intermediate temperature. J. Mater. Res. Technol 12 (2021), pp. 1755–1761. doi:10.1016/j.jmrt.2021.03.052.
  • Y. Dong, L.Y. Ye, X.D. Liu, B. Ke, and T.J. Hu, Creep-aging behaviors of Al-Cu-Li alloy with different grain sizes. J. Alloys Compd 911 (2022), pp. 164992. doi:10.1016/j.jallcom.2022.164992.
  • C.H. Liu, J.S. Yang, P.P. Ma, Z.Y. Ma, L.H. Zhan, K.L. Chen, M.H. Huang, J.J. Li, and Z.M. Li, Large creep formability and strength–ductility synergy enabled by engineering dislocations in aluminum alloys. Int. J. Plast 134 (2020), pp. 102774. doi:10.1016/j.ijplas.2020.102774.
  • Y.X. Zhao, Q.H. Fang, Y.W. Liu, P.H. Wen, and Y. Liu, Creep behavior as dislocation climb over NiAl nanoprecipitates in ferritic alloy: the effects of interface stresses and temperature. Int. J. Plast 69 (2015), pp. 89–101. doi:10.1016/j.ijplas.2015.02.006.
  • E. Ma and T. Zhu, Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20 (2017), pp. 323–331. doi:10.1016/j.mattod.2017.02.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.