100
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Nonlinear optical properties of coupled quantum dots in peanut configuration

ORCID Icon, , , ORCID Icon & ORCID Icon
Pages 1911-1926 | Received 28 Apr 2023, Accepted 28 Jul 2023, Published online: 07 Aug 2023

References

  • W. Ulrike, Optical Properties of Semiconductor Quantum Dots, 1st ed., Springer, Berlin, Heidelberg, 1997.
  • S. Coe-Sullivan, Quantum dot developments. Nat. Photonics 3 (2009), pp. 315–316.
  • J.J. Coleman, J.D. Young, and A. Garg, Semiconductor quantum dot lasers: A tutorial. J. Light. Technol 29 (2011), pp. 499–510.
  • F.P. García de Arquer, D.V. Talapin, V.I. Klimov, Y. Arakawa, M. Bayer, and E.H. Sargent, Semiconductor quantum dots: Technological progress and future challenges. Science 373 (2021), pp. 80.
  • Y. Arakawa, Progress in GaN-based quantum dots for optoelectronics applications. IEEE J. Sel. Top. Quantum Electron 8 (2002), pp. 823–832.
  • X. Li, M. Rui, J. Song, Z. Shen, and H. Zeng, Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater 25 (2015), pp. 4929–4947.
  • A.P. Litvin, I.V. Martynenko, F. Purcell-Milton, A.V. Baranov, A.V. Fedorov, and Y.K. Gun’ko, Colloidal quantum dots for optoelectronics. J. Mater. Chem. A 5 (2017), pp. 13252–13275.
  • V.G. Reshma and P.V. Mohanan, Quantum dots: Applications and safety consequences. J. Lumin 205 (2019), pp. 287–298.
  • D. Loss and D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57 (1998), pp. 120–126.
  • C. Kloeffel and D. Loss, Prospects for spin-based quantum computing in quantum dots. Annu. Rev. Condens. Matter Phys. 4 (2013), pp. 51–81.
  • G. Burkard, H.-A. Engel, and D. Loss, Spintronics and quantum dots for quantum computing and quantum communication. Fortschritte Der. Phys. 48 (2000), pp. 965–986.
  • A. Kim, J.K. Dash, P. Kumar, and R. Patel, Carbon-Based quantum dots for photovoltaic devices: A review. ACS Appl. Electron. Mater 4 (2022), pp. 27–58.
  • M.V. Kovalenko, Opportunities and challenges for quantum dot photovoltaics. Nat. Nanotechnol. 10 (2015), pp. 994–997.
  • L. Duan, L. Hu, X. Guan, C. Lin, D. Chu, S. Huang, X. Liu, J. Yuan, and T. Wu, Quantum dots for photovoltaics: A tale of two materials. Adv. Energy Mater 11 (2021), pp. 2100354.
  • D. Bimberg and N. Ledentsov, Quantum dots: Lasers and amplifiers. J. Phys. Condens. Matter 15 (2003), pp. R1063–R1076.
  • D. Bimberg, Quantum dots for lasers, amplifiers and computing. J. Phys. D. Appl. Phys. 38 (2005), pp. 2055–2058.
  • B. Kelleher, C. Bonatto, G. Huyet, and S.P. Hegarty, Excitability in optically injected semiconductor lasers: Contrasting quantum- well- and quantum-dot-based devices. Phys. Rev. E 83 (2011), pp. 026207.
  • C. Gies, J. Wiersig, M. Lorke, and F. Jahnke, Semiconductor model for quantum-dot-based microcavity lasers. Phys. Rev. A 75 (2007), pp. 013803.
  • R. Ding, Y. Chen, Q. Wang, Z. Wu, X. Zhang, B. Li, and L. Lin, Recent advances in quantum dots-based biosensors for antibiotics detection. J. Pharm. Anal. 12 (2022), pp. 355–364. doi:10.1016/j.jpha.2021.08.002.
  • Z. Yue, F. Lisdat, W.J. Parak, S.G. Hickey, L. Tu, N. Sabir, D. Dorfs, and N.C. Bigall, Quantum-Dot-Based photoelectrochemical sensors for chemical and biological detection. ACS Appl. Mater. Interfaces 5 (2013), pp. 2800–2814.
  • D.A.B. Miller, Quantum well optoelectronic switching devices. Int. J. High Speed Electron. Syst. 01 (1990), pp. 19–46.
  • L. Lu, W. Xie, and H. Hassanabadi, Laser field effect on the nonlinear optical properties of donor impurities in quantum dots with Gaussian potential. Phys. B Condens. Matter 406 (2011), pp. 4129–4134.
  • T. Nann and P. Mulvaney, Single quantum dots in spherical silica particles. Angew. Chemie Int. Ed. 43 (2004), pp. 5393–5396.
  • Varsha, M. Kria, J.E. Hamdaoui, L.M. Pérez, V. Prasad, M. El-Yadri, D. Laroze, and E.M. Feddi, Quantum confined stark effect on the linear and nonlinear optical properties of SiGe/Si semi oblate and prolate quantum dots grown in Si wetting layer. Nanomaterials 11 (2021), pp. 1513.
  • M.H. Baier, S. Watanabe, E. Pelucchi, and E. Kapon, High uniformity of site-controlled pyramidal quantum dots grown on prepatterned substrates. Appl. Phys. Lett. 84 (2004), pp. 1943–1945.
  • G. Juska, V. Dimastrodonato, L.O. Mereni, A. Gocalinska, and E. Pelucchi, Towards quantum-dot arrays of entangled photon emitters. Nat. Photonics 7 (2013), pp. 527–531.
  • P. Moontragoon, N. Vukmirović, Z. Ikonić, and P. Harrison, Electronic structure and optical properties of Sn and SnGe quantum dots. J. Appl. Phys. 103 (2008), pp. 103712.
  • S. Huang, Z. Dai, F. Qu, L. Zhang, and X. Zhu, Self-assembled large-scale and cylindrical CuInSe2 quantum dots on indium tin oxide films. Nanotechnology 13 (2002), pp. 691–694.
  • E.S. Hakobyan, Nonlinear optical properties of cylindrical quantum dot with Kratzer confining potential in the presence of axial homogeneous electric field. J. Phys: Conf. Ser. 1326 (2019), pp. 012008.
  • D.B. Hayrapetyan, E.M. Kazaryan, T.V. Kotanjyan, and H.K. Tevosyan, Exciton states and interband absorption of cylindrical quantum dot with Morse confining potential. Superlattices Microstruct. 78 (2015), pp. 40–49.
  • M. Dezhkam and A. Zakery, Exact investigation of the electronic structure and the linear and nonlinear optical properties of conical quantum dots. Chin. Opt. Lett. 10(12) (2012), pp. 121901–121901.
  • D.B. Hayrapetyan, A.V. Chalyan, E.M. Kazaryan, and H.A. Sarkisyan, Direct interband light absorption in conical quantum dot. J. Nanomater. 16(1) (2016), pp. 406–406.
  • M.R.K. Vahdani and G. Rezaei, Linear and nonlinear optical properties of a hydrogenic donor in lens-shaped quantum dots. Phys. Lett. A 373 (2009), pp. 3079–3084.
  • A.J. Williamson, L.W. Wang, and A. Zunger, Theoretical interpretation of the experimental electronic structure of lens-shaped self-assembled InAs/GaAs quantum dots. Phys. Rev. B 62 (2000), pp. 12963–12977.
  • P. Miska, C. Paranthoen, J. Even, N. Bertru, A. Le Corre, and O. Dehaese, Experimental and theoretical studies of electronic energy levels in InAs quantum dots grown on (001) and (113)B InP substrates. J. Phys. Condens. Matter 14 (2002), pp. 12301–12309.
  • T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha, and L.P. Kouwenhoven, Microwave spectroscopy of a quantum-dot molecule. Nature 395 (1998), pp. 873–876.
  • J. Cui, Y.E. Panfil, S. Koley, D. Shamalia, N. Waiskopf, S. Remennik, I. Popov, M. Oded, and U. Banin, Colloidal quantum dot molecules manifesting quantum coupling at room temperature. Nat. Commun 10 (2019), pp. 5401.
  • C. Jennings, X. Ma, T. Wickramasinghe, M. Doty, M. Scheibner, E. Stinaff, and M. Ware, Self-assembled InAs/GaAs coupled quantum dots for photonic quantum technologies. Adv. Quantum Technol. 3 (2019), pp. 1900085.
  • P. Mantashyan, G. Mantashian, and D. Hayrapetyan, Talbot effect in InAs/GaAs coupled cylindrical quantum dots ensemble. Physica E 148 (2023), pp. 115662.
  • D. Bejan and E.C. Niculescu, Electronic and optical properties of asymmetric GaAs double quantum dots in intense laser fields. Philos. Mag. 96 (2016), pp. 1131–1149.
  • T.A. Sargsian, P.A. Mantashyan, and D.B. Hayrapetyan, Effect of Gaussian and Bessel laser beams on linear and nonlinear optical properties of vertically coupled cylindrical quantum dots. Nano-Struct. Nano-Objects 33 (2023), pp. 100936.
  • S. Nasa and S.P. Purohit, Linear and third order nonlinear optical properties of GaAs quantum dot in terahertz region. Physica E 118 (2020), pp. 113913.
  • S.E. Economou, N. Lindner, and T. Rudolph, Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett 105 (2010), pp. 093601.
  • K.G. Dvoyan, D.B. Hayrapetyan, E.M. Kazaryan, and A.A. Tshantshapanyan, Electron states and light absorption in strongly oblate and strongly prolate ellipsoidal quantum dots in presence of electrical and magnetic fields. Nanoscale Res. Lett. 2 (2007), pp. 601–608.
  • D.B. Hayrapetyan, E.M. Kazaryan, and H.A. Sarkisyan, Magneto-absorption in conical quantum dot ensemble: Possible applications for QD LED. Opt. Commun. 371 (2016), pp. 138–143.
  • G.A. Mantashian, P.A. Mantashyan, and D.B. Hayrapetyan, Modeling of quantum dots with the finite element method. Computation 11(1) (2023), pp. 5.
  • G. Wang, Third-harmonic generation in cylindrical parabolic quantum wires with an applied electric field. Phys. Rev. B 72 (2005), pp. 155329.
  • S. Shao, K.-X. Guo, Z.-H. Zhang, N. Li, and C. Peng, Studies on the third-harmonic generations in cylindrical quantum dots with an applied electric field. Superlattices Microstruct. 48 (2010), pp. 541–549.
  • G. Wang and K. Guo, Excitonic effects on the third-harmonic generation in parabolic quantum dots. J. Phys. Condens. Matter 13 (2001), pp. 8197–8206.
  • S. Baskoutas, E. Paspalakis, and A.F. Terzis, Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field. J. Phys. Condens. Matter 19 (2007), pp. 395024.
  • S. Baskoutas, E. Paspalakis, and A.F. Terzis, Effects of excitons in nonlinear optical rectification in semiparabolic quantum dots. Phys. Rev. B 74 (2006), pp. 153306.
  • E. Rosencher and P. Bois, Model system for optical nonlinearities: asymmetric quantum wells, Phys. Rev. B. 44 (1991) pp. 11315–11327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.