209
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructure-crystallographic texture and substructure evolution in unpeened and laser shock peened HSLA steel upon ratcheting deformation

ORCID Icon, &
Pages 2073-2101 | Received 08 May 2023, Accepted 01 Aug 2023, Published online: 14 Aug 2023

References

  • A. Htay, An analysis of the study of mechanical properties and microstructural relationship of HSLA steels used in ship hulls, World Maritime University diss., 2007, pp. 190.
  • H.K.D.H. Bhadeshia, Steels Microstructure and Properties, 3rd ed., Elsevier, UK, 2006.
  • J.R. Paules, Practical considerations in microalloying with vanadium, niobium, or titanium, Proceedings of the International Symposium on Microalloyed Vanadium Steels, Cracow, 1990, pp. 19.
  • P.K. Dwivedi, R. Vinjamuri, S.K. Sahoo, and K. Dutta, Investigation on the effect of asymmetric cyclic loading on ratcheting deformation and bulk texture development in HSLA steel. Met. Mater. Int. 28 (2022), pp. 1836–1850. doi:10.1007/s12540-021-01107-2.
  • V. Aleksić, L. Milović, I. Blačić, T. Vuherer, and S. Bulatović, Effect of LCF on behavior and microstructure of microalloyed HSLA steel and its simulated CGHAZ. Eng. Fail. Anal. 104 (2019), pp. 1094–1106. doi:10.1016/j.engfailanal.2019.06.017.
  • O. Fatoba and R. Akid, Uniaxial cyclic elasto-plastic deformation and fatigue failure of API-5L X65 steel under various loading conditions. Theor. Appl. Fract. Mech. 94 (2018), pp. 147–159. doi:10.1016/j.tafmec.2018.01.015.
  • S. Sinha and S. Ghosh, Modeling cyclic ratcheting based fatigue life of HSLA steels using crystal plasticity FEM simulations and experiments. Int. J. Fatigue 28(12) (2006), pp. 1690–1704. doi:10.1016/j.ijfatigue.2006.01.008.
  • Y. Kim and W. Hwang, High-cycle, low-cycle, extremely low-cycle fatigue and monotonic fracture behaviors of low-carbon steel and its welded joint. Materials 12(24) (2019), pp. 4111. doi:10.3390/ma12244111.
  • K. Guozheng, Y. Liu, and Z. Li, Experimental study on ratcheting fatigue interaction of SS304 stainless steel in uniaxial cyclic stressing. Mater. Sci. Eng. A 435–436 (2006), pp. 396–404. doi:10.1016/j.msea.2006.07.006.
  • Q. Dong, P. Yang, and G. Xu, Low cycle fatigue and ratcheting failure behavior of AH32 steel under uniaxial cyclic loading. Int. J. Naval Arc. Ocean Eng. 11(2) (2019), pp. 671–678. doi:10.1016/j.ijnaoe.2018.09.003.
  • P. Mishra, R.S. Rajpurohit, N.C. Santhi Srinivas, G.V.S. Sastry, and V. Singh, Ratcheting fatigue behavior of modified 9Cr–1Mo steel at room temperature. Metals Mater. Int. 27 (2021), pp. 4922–4936. doi:10.1007/s12540-020-00811-9.
  • S.K. Paul, A critical review of experimental aspects in ratcheting fatigue: Microstructure to specimen to component. J. Mater. Res. Tech. 8(5) (2019), pp. 4894–4914. doi:10.1016/j.jmrt.2019.06.014.
  • S.K. Paul, S. Sivaprasad, S. Dhar, and S. Tarafder, Cyclic plastic deformation and damage in 304LN stainless steel. Mater. Sci. Eng. A 528(15) (2011), pp. 4873–4882. doi:10.1016/j.msea.2011.03.048.
  • A. Ghosh and N.P. Gurao, Effect of crystallographic texture on the planar anisotropy of ratcheting response in 316 stainless steel sheet. Mater. Des. 109 (2016), pp. 186–196. doi:10.1016/j.matdes.2016.07.079.
  • K. Dutta, S. Sivaprasad, S. Tarafder, and K.K. Ray, Influence of asymmetric cyclic loading on substructure formation and ratcheting fatigue behaviour of AISI 304LN stainless steel. Mater. Sci Eng. A 527(29–30) (2010), pp. 7571–7579. doi:10.1016/j.msea.2010.07.107.
  • R. Kreethi, A.K. Mondal, and K. Dutta, Ratcheting fatigue behaviour of 42CrMo4 steel under different heat treatment conditions. Mater. Sci. Eng. A 679 (2017), pp. 66–74. doi:10.1016/j.msea.2016.10.019.
  • Z. Yan, D. Wang, X. He, W. Wang, H. Zhang, P. Dong, C. Li, Y. Li, J. Zhou, Z. Liu, and L. Sun, Deformation behaviors and cyclic strength assessment of AZ31B magnesium alloy based on steady ratcheting effect. Mater. Sci. Eng. A 723 (2018), pp. 212–220. doi:10.1016/j.msea.2018.03.023.
  • Z.R. Zhang, Z.M. Yue, Y.M. Bao, and J. Gao, Ratcheting characterization and its effect on low cycle fatigue behavior of DP600 steel sheet under cyclic shear path. Int. J. Fatigue 166 (2023), pp. 107231. doi:10.1016/j.ijfatigue.2022.107231.
  • Q. Zhou, L. Qian, J. Meng, L. Zhao, and F. Zhang, Low-cycle fatigue behavior and microstructural evolution in a low-carbon carbide-free bainitic steel. Mater. Des. 85 (2015), pp. 487–496. doi:10.1016/j.matdes.2015.06.172.
  • W. Yang, P. Cheng, Y. Li, R. Wang, G. Liu, L. Xin, J. Zhang, and J. Sun, Ratcheting-induced twinning/de-twinning behaviors in a 316LN austenitic stainless steel. Mater. Sci. Eng. A 851 (2022), pp. 143648. doi:10.1016/j.msea.2022.143648.
  • S. Karami, B. Piroozi, and E. Borhani, Fatigue-induced microstructure evolution and ratcheting behavior of ultrafine-grained (UFG) pure aluminum processed by accumulative roll bonding (ARB). Mater. Charact. 196 (2022), pp. 112578. doi:10.1016/j.matchar.2022.112578.
  • T. Sun, Y. Xie, L. Qin, Z. Sun, Z.G. Zheng, C. Xie, and Z. Huang, Investigation on uniaxial ratcheting fatigue behaviors and microstructure evolution of ultrafine-grained 6061 aluminum alloy. J Mater. Res. Tech. 21 (2022), pp. 1353–1364. doi:10.1016/j.jmrt.2022.09.105.
  • A. Ghosh, Anisotropic tensile and ratcheting behavior of commercially pure titanium processed via cross rolling and annealing. Int. J Fatigue 120 (2019), pp. 12–22. doi:10.1016/j.ijfatigue.2018.10.024.
  • L. Chang, B. Zhou, T. Ma, J. Li, X. He, and C. Zhou, Comparisons of low cycle fatigue behavior of CP-Ti under stress and strain-controlled modes in transverse direction. Mater. Sci. Eng. A 746 (2019), pp. 27–40. doi:10.1016/j.msea.2018.12.125.
  • S. Sinha and N.P. Gurao, The role of crystallographic texture on load reversal and low cycle fatigue performance of commercially pure titanium. Mater. Sci. Eng. A 691 (2017), pp. 100–109. doi:10.1016/j.msea.2017.03.043.
  • J.S. Jha, S. Dhala, S.P. Toppo, R. Singh, A. Tewari, S.K. Mishra, and B. Jayabalan, Effect of strain amplitude on low cycle fatigue and microstructure evolution in Ti-6Al-4V: A TKD and TEM characterization. Mater. Charact. 155 (2019), pp. 109829. doi:10.1016/j.matchar.2019.109829.
  • Y.C. Lin, Z.H. Liu, X.M. Chen, and J. Chen, Uniaxial ratcheting and fatigue failure behaviors of hot-rolled AZ31B magnesium alloy under asymmetrical cyclic stress-controlled loadings. Mater. Sci. Eng. A 573 (2013), pp. 234–244. doi:10.1016/j.msea.2013.03.004.
  • Y. Li, X. Pan, and G. Wang, Low cycle fatigue and ratcheting properties of steel 40Cr under stress controlled tests. Int. J. Fatigue 55 (2013), pp. 74–80. doi:10.1016/j.ijfatigue.2013.05.011.
  • V. Over and Y.L. Lawrence, Laser shock peening induced back stress mitigation in rolled stainless steel, ASME. J. Manuf. Sci. Eng. 144(6) (2022), pp. 061010. doi:10.1115/1.4052909.
  • C. Zhang, Y. Dong, and C. Ye, Recent developments and novel applications of laser shock peening: A review. Adv. Eng. Mater. 23 (2021), pp. 2001216. doi:10.1002/adem.202001216.
  • R. Sundar, P. Ganesh, R.K. Gupta, G. Ragvendra, B.K. Pant, V. Kain, K. Ranganathan, R. Kaul, and K.S. Bindra, Laser shock peening and its applications: A review, laser shock peening and its applications: A review. Lasers Manuf. Mater. Process 6 (2019), pp. 424–463. doi:10.1007/s40516-019-00098-8.
  • P.K. Dwivedi, R. Vinjamuri, A.K. Rai, P. Ganesh, K. Ranganathan, K.S. Bindra, and K. Dutta, Effect of laser shock peening on ratcheting strain accumulation, fatigue life and bulk texture evolution in HSLA steel. Int. J. Fatigue 163 (2022), pp. 107033. doi:10.1016/j.ijfatigue.2022.107033.
  • Y. Zhang, K. Zhang, Z. Hu, T. Chen, L. Susmel, and B. Wei, The synergetic effects of shot peening and laser-shot peening on the microstructural evolution and fatigue performance of a medium carbon steel. Int. J. Fatigue 166 (2023), pp. 107246. doi:10.1016/j.ijfatigue.2022.107246.
  • D. Karthik, J. Jiang, Y. Hu, and Z. Yao, Effect of multiple laser shock peening on microstructure, crystallographic texture and pitting corrosion of aluminum-lithium alloy 2060-T8. Surf. Coat. Tech. 421 (2021), pp. 127354. doi:10.1016/j.surfcoat.2021.127354.
  • A.K. Rai, R. Biswal, R.K. Gupta, R. Singh, S.K. Rai, K. Ranganathan, P. Ganesh, R. Kaul, and K.S. Bindra, Study on the effect of multiple laser shock peening on residual stress and microstructural changes in modified 9Cr-1Mo (P91) steel. Surf. Coat. Tech. 358 (2019), pp. 125–135. doi:10.1016/j.surfcoat.2018.11.027.
  • H.F. Lu, K.N. Xue, X. Xu, K.Y. Luo, F. Xing, J.H. Yao, and J.Z. Lu, Effects of laser shock peening on microstructural evolution and wear property of laser hybrid remanufactured Ni25/Fe104 coating on H13 tool steel. J. Mater. Proces. Tech. 291 (2021), pp. 117016. doi:10.1016/j.jmatprotec.2020.117016.
  • Y. Shadangi, K. Chattopadhyay, S.B. Rai, and V. Singh, Effect of laser shock peening on microstructure, mechanical properties and corrosion behavior of interstitial free steel. Surf. Coat. Tech. 280 (2015), pp. 216–224. doi:10.1016/j.surfcoat.2015.09.014.
  • H. Zhang, Z. Cai, J. Chi, G. Han, R. Sun, Z. Che, H. Zhang, and W. Guo, Microstructural evolution, mechanical behaviors and strengthening mechanism of 300 M steel subjected to multi-pass laser shock peening. Opt. Laser Tech. 148 (2022), pp. 107726. doi:10.1016/j.optlastec.2021.107726.
  • P. Ganesh, A.K. Rai, P.K. Dwivedi, A. Chowdhury, R. Biswal, D.C. Nagpure, R. Sundar, R.K. Gupta, K. Ranganathan, K.S. Bindra, and R. Kaul, Study on enhancing fatigue life of SAE 9260 spring steel with surface defect through laser shock peening. J. Mater. Eng. Perform. 28 (2019), pp. 2029–2035. doi:10.1007/s11665-019-03990-8.
  • L. Sahu, A.K. Mishra, and K. Dutta, Ratcheting behavior of a non-conventional stainless steel and associated microstructural variations. J. Mater. Eng. Perform. 23 (2014), pp. 4122–4129. doi:10.1007/s11665-014-1089-2.
  • R. Kishor, L. Sahu, K. Dutta, and A.K. Mondal, Assessment of dislocation density in asymmetrically cyclic loaded non-conventional stainless steel using X-ray diffraction profile analysis. Mater. Sci. Eng. A 598 (2014), pp. 299–303. doi:10.1016/j.msea.2014.01.043.
  • C. Gaudin and X. Feaugas, Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses. Acta Mater. 52(10) (2004), pp. 3097–3110. doi:10.1016/j.actamat.2004.03.011.
  • G. Kang, Y. Dong, Y. Liu, H. Wang, and X. Cheng, Uniaxial ratchetting of 20 carbon steel: Macroscopic and microscopic experimental observations. Mater. Sci. Eng. A 528(16–17) (2011), pp. 5610–5620. doi:10.1016/j.msea.2011.03.113.
  • D. Yu, D. Zhang, Y. Luo, J. Sun, J. Xu, and F. Pan, Microstructure evolution during high cycle fatigue in Mg–6Zn–1Mn alloy. Mater. Sci. Eng. A 658 (2016), pp. 99–108. doi:10.1016/j.msea.2016.01.061.
  • B. Dylewski, M. Risbet, and S. Bouvier, The tridimensional gradient of microstructure in worn rails – experimental characterization of plastic deformation accumulated by RCF. Wear 392–393 (2017), pp. 50–59. doi:10.1016/j.wear.2017.09.001.
  • N. Li, W. Kingkam, R. Han, M. Tang, Y. Yao, H. Zhang, and C. Zhao, Effect of deformation parameters on microstructural evolution during hot compression of Nb-V-Mo microalloyed steel. Mater. Res. Exp. 7 (2020), pp. 066521. doi:10.1088/2053-1591/ab9b14.
  • P. Mishra, N.C. Santhi Srinivas, G.V.S. Sastry, and V. Sing, Effect of mean stress on ratcheting fatigue behavior of modified 9 Cr-1 Mo steel at RT and 600°C. Trans Indian Natl. Acad. Eng. 7 (2022), pp. 425–432. doi:10.1007/s41403-021-00295-y.
  • Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD study of a hot deformed nickel-based superalloy. J Alloys Compos. 640 (2015), pp. 101–113. doi:10.1016/j.jallcom.2015.04.008.
  • D.G. He, Y.C. Lin, J. Chen, D.D. Chen, J. Huang, Y. Tang, and M.S. Chen, Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates. Mater. Des. 154 (2018), pp. 51–62. doi:10.1016/j.matdes.2018.05.022.
  • X.M. Chen, Y.C. Lin, D.X. Wen, J.L. Zhang, and M. He, Dynamic recrystallization behavior of a typical nickel-based superalloy during hot deformation. Mater. Des. 57 (2014), pp. 568–577. doi:10.1016/j.matdes.2013.12.072.
  • P. Zhao, B. Chen, J. Kelleher, G. Yuan, B. Guan, X. Zhang, and S. Tu, High-cycle-fatigue induced continuous grain growth in ultrafine-grained titanium. Acta Mater. 174 (2019), pp. 29–42. doi:10.1016/j.actamat.2019.05.038.
  • Y.B. Wang, B.Q. Li, M.L. Sui, and S.X. Mao, Deformation-induced grain rotation and growth in nanocrystalline Ni. Appl. Phys. Lett. 92 (2008), pp. 011903. doi:10.1063/1.2828699.
  • B. Das, A. Singh, and S.K. Paul, Low cycle fatigue performance of DP600 steel under various pre-straining paths. Int. J. Fatigue 132 (2020), pp. 105331. doi:10.1016/j.ijfatigue.2019.105331.
  • C. Schayes, J. Bouquerel, J.B. Vogt, F. Palleschi, and S. Zaefferer, A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading. Mater. Charact. 115 (2016), pp. 61–70. doi:10.1016/j.matchar.2016.03.020.
  • Y. Sun, Z. Hou, Z. Yao, and Y. Hu, Gradient structure and mechanical behavior induced by multiple laser peening in 304 austenitic stainless steel. Int. J. Adv. Manuf. Tech. 120 (2022), pp. 3383–3392. doi:10.1007/s00170-022-08984-w.
  • W. Kong, Y. Wang, Y. Chen, X. Liu, and C. Yuan, Investigation of uniaxial ratcheting fatigue behaviours and fracture mechanism of GH742 superalloy at 923 K. Mater. Sci. Eng. A 831 (2022), pp. 142173. doi:10.1016/j.msea.2021.142173.
  • N. Allain-Bonasso, F. Wagner, S. Berbenni, and D.P. Field, A study of the heterogeneity of plastic deformation in IF steel by EBSD. Mater. Sci. Eng. A 548 (2012), pp. 56–63. doi:10.1016/j.msea.2012.03.068.
  • A. Hadadzadeh, F. Mokdad, M.A. Wells, and D.L. Chen, A new grain orientation spread approach to analyze the dynamic recrystallization behavior of a cast-homogenized Mg-Zn-Zr alloy using electron backscattered diffraction. Mater. Sci. Eng. A 709 (2018), pp. 285–289. doi:10.1016/j.msea.2017.10.062.
  • J. Humphreys, G.S. Rohrer, and A. Rollett, Recrystallization and Related Annealing Phenomena, 3rd ed., Elsevier, USA, 2017.
  • D. Raabe and K. Lucke, Rolling and annealing textures of BCC metals. Mater. Sci. Forum. 157–162 (1994), pp. 597–610. doi:10.4028/www.scientific.net/MSF.157-162.597.
  • Q. Hongchao, Z. Jibin, Z. Gongxuan, and G. Yu, Effects of laser shock peening on microstructure and residual stress evolution in Ti–45Al–2Cr–2Nb–0.2B alloy. Surf. Coat. Tech. 276 (2015), pp. 145–151. doi:10.1016/j.surfcoat.2015.06.065.
  • S.M. Aktarer, T. Küçükömeroğlu, and K. Davut, Texture evolution of friction stir-processed dual-phase steel. Metall. Mater. Trans. A 53 (2022), pp. 1889–1905. doi:10.1007/s11661-022-06644-y.
  • L. Kestens and J.J. Jonas, Transformation and recrystallization texture associated with processing. ASM Handbook 14A (2005), pp. 685.
  • P. Wu, Y. Deng, J. Zhang, S. Fan, and X. Zhang, The effect of inhomogeneous microstructures on strength and fatigue properties of an Al-Cu-Li thick plate. Mater. Sci. Eng. A 731 (2018), pp. 1–11. doi:10.1016/j.msea.2018.06.033.
  • S. Biswas, D.-I. Kim, and S. Suwas, Asymmetric and symmetric rolling of magnesium: Evolution of microstructure, texture and mechanical properties. Mater. Sci. Eng. A 550 (2012), pp. 19–30. doi:10.1016/j.msea.2012.03.099.
  • R.K. Sabat, M.V.S.S.D.S.S. Pavan, D.S. Aakash, M. Kumar, and S.K. Sahoo, Mechanism of texture and microstructure evolution during warm rolling of Ti-6Al-4VAlloy. Philos. Mag. 98(28) (2018), pp. 2562–2581. doi:10.1080/14786435.2018.1493237.
  • X. Pan, L. Zhou, C. Wang, K. Yu, Y. Zhu, M. Yi, L. Wang, S. Wen, W. He, and X. Liang, Microstructure and residual stress modulation of 7075 aluminum alloy for improving fatigue performance by laser shock peening. Int. J. Machine Tools Manuf. 184 (2023), pp. 103979. doi:10.1016/j.ijmachtools.2022.103979.
  • Y. Xiong, T. Zhou, Z. Chen, Y. Wu, X. Zha, Y. Li, S. Wang, H. Singh, M. Huttula, and W. Cao, Laser shock peening rounds influencing microstructural and mechanical properties of 300M steel. Mater. Sci. Tech. (2023). doi:10.1080/02670836.2023.2196472.
  • Y. Dong, G. Kang, Y. Liu, and H. Jiang, Multiaxial ratcheting of 20 carbon steel: Macroscopic experiments and microscopic observations. Mater. Charact. 83 (2013), pp. 1–12. doi:10.1016/j.matchar.2013.05.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.