48
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Changes over time in ferroelectricity of nanocomposites containing cellulose combined with [NH4][Zn(HCOO)3]

ORCID Icon
Pages 1999-2012 | Received 16 Jan 2023, Accepted 10 Aug 2023, Published online: 24 Aug 2023

References

  • J. Zhao, H. Li, C. Li, Q. Zhang, J. Sun, X. Wang, J. Guo, L. Xie, J. Xie, B. He, Z. Zhou, C. Lu, W. Lu, G. Zhu, and Y. Yao, MOF for template-directed growth of well-oriented nanowire hybrid arrays on carbon nanotube fibers for wearable electronics integrated with triboelectric nanogenerators. Nano Energy 45 (2018), pp. 420–431. doi:10.1016/j.nanoen.2018.01.021.
  • K. Chattopadhyay, M. Mandal, and D.K. Maiti, Smart metal–organic frameworks for biotechnological applications: a mini-review. ACS Appl. Bio Mater 4 (2021), pp. 8159–8171. doi:10.1021/acsabm.1c00982.
  • H.-S. Wang, Y.-H. Wang, and Y. Ding, Development of biological metal–organic frameworks designed for biomedical applications: from bio-sensing/bio-imaging to disease treatment. Nanoscale Adv 2 (2020), pp. 3788–3797. doi:10.1039/D0NA00557F.
  • H. Cai, Y.-L. Huang, and D. Li, Biological metal–organic frameworks: structures, host–guest chemistry and bio-applications. Coord. Chem. Rev 378 (2019), pp. 207–221. doi:10.1016/j.ccr.2017.12.003.
  • K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, and J.R. Long, Carbon dioxide capture in metal–organic frameworks. Chem. Rev 112 (2012), pp. 724–781. doi:10.1021/cr2003272.
  • B. Xu, H. Zhang, H. Mei, and D. Sun, Recent progress in metal-organic framework-based supercapacitor electrode materials. Coord. Chem. Rev 420 (2020), pp. 213438. doi:10.1016/j.ccr.2020.213438.
  • B. Yu, Y. Liu, Z. Li, Y. Liu, P. Rao, and G. Li, Durable substrates incorporated with MOFs: Recent advances in engineering strategies and water treatment applications. Chem. Eng. J 455 (2023), pp. 140840. doi:10.1016/j.cej.2022.140840.
  • Z. Wang, R. Gao, X. Deng, G. Chen, W. Cai, and C. Fu, Dielectric and ferroelectric properties of LaFeO3 particles derived from metal organic frameworks precursor. Ceram. Int 45 (2019), pp. 1825–1830. doi:10.1016/j.ceramint.2018.10.071.
  • Z. Li, S. Zhang, R. Xu, Q. Zhang, Z. Wang, and C. Fu, Photocatalytic performance of BiFeO3 based on MOFs precursor. Appl. Organometal. Chem 33 (2019), pp. e5105. doi:10.1002/aoc.5105.
  • J.W.M. Osterrieth and D. Fairen-Jimenez, Metal–organic framework composites for theragnostics and drug delivery applications. Biotechnol. J 16 (2021), pp. 2000005. doi:10.1002/biot.202000005.
  • X. Liu, Y. Xiao, Z. Zhang, Z. You, J. Li, D. Ma, and B. Li, Recent progress in metal-organic frameworks@cellulose hybrids and their applications. Chinese J. Chem 39 (2021), pp. 3462–3480. doi:10.1002/cjoc.202100534.
  • X. Ma, Y. Xiong, Y. Liu, J. Han, G. Duan, Y. Chen, S. He, C. Mei, S. Jiang, and K. Zhang, When MOFs meet wood: from opportunities toward applications. Chem 8 (2022), pp. 2342–2361. doi:10.1016/j.chempr.2022.06.016.
  • M. Matsumoto and T. Kitaoka, Ultraselective gas separation by nanoporous metal−organic frameworks embedded in gas-barrier nanocellulose films. Adv. Mater 28 (2016), pp. 1765–1769. doi:10.1002/adma.201504784.
  • L. Zhu, L. Zong, X. Wu, M. Li, H. Wang, J. You, and C. Li, Shapeable fibrous aerogels of metal–organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano 12 (2018), pp. 4462–4468. doi:10.1021/acsnano.8b00566.
  • S. Zhou, X. Kong, B. Zheng, F. Huo, M. Strømme, and C. Xu, Cellulose nanofiber @ conductive metal–organic frameworks for high-performance flexible supercapacitors. ACS Nano 13 (2019), pp. 9578–9586. doi:10.1021/acsnano.9b04670.
  • K.T. Nguen, S.D. Milovidova, A.S. Sidorkin, and O.V. Rogazinskaya, Dielectric properties of composites based on nanocrystalline cellulose with triglycine sulfate. Phys. Solid State 57 (2015), pp. 503–506. doi:10.1134/S1063783415030178.
  • H.T. Sahin and M.B. Arslan, A study on physical and chemical properties of cellulose paper immersed in various solvent mixtures. Int. J. Mol. Sci 9 (2008), pp. 78–88. doi:10.3390/ijms9010078.
  • W. Zhang and R.-G. Xiong, Ferroelectric metal–organic frameworks. Chem. Rev 112 (2012), pp. 1163–1195. doi:10.1021/cr200174w.
  • H.T. Nguyen, M.T. Chau, T.B.T. Phan, A.Y. Milinskiy, and S.V. Baryshnikov, Phase transition and ferroelectricity of composites based on ferroelectric metal-organic framework of [NH4][Zn(HCOO)3]. Ferroelectr. Lett. Sect 49 (2022), pp. 22–29. doi:10.1080/07315171.2022.2076465.
  • M. Mączka, J. Janczak, K. Hermanowicz, and J. Hanuza, Phonon, optical and luminescent properties of novel heterometallic frameworks of [(NH4)(H2O)][CrIIIMII(HCOO)6] (MII = Mn, Zn, Co, Ni). . J. Alloys Compd 732 (2018), pp. 201–209. doi:10.1016/j.jallcom.2017.10.183.
  • M. Mączka, K. Szymborska-Małek, A. Ciupa, and J. Hanuza, Comparative studies of vibrational properties and phase transitions in metal-organic frameworks of [NH4][M(HCOO)3] with M = Mg, Zn, Ni, Fe, Mn. Vib. Spectrosc 77 (2015), pp. 17–24. doi:10.1016/j.vibspec.2015.02.003.
  • Y. Chu, Y. Sun, W. Wu, and H. Xiao, Dispersion properties of nanocellulose: a review. Carbohydr. Polym 250 (2020), pp. 116892. doi:10.1016/j.carbpol.2020.116892.
  • B.D. Mai, H.T. Nguyen, and D.H. Ta, Effects of moisture on structure and electrophysical properties of a ferroelectric composite from nanoparticles of cellulose and triglycine sulfate. Braz. J. Phys 49 (2019), pp. 333–340. doi:10.1007/s13538-019-00658-5.
  • P.B. Filson, B.E. Dawson-Andoh, and D. Schwegler-Berry, Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem. 11 (2009), pp. 1808–1814. doi:10.1039/b915746h.
  • G.-C. Xu, X.-M. Ma, L. Zhang, Z.-M. Wang, and S. Gao, Disorder−order ferroelectric transition in the metal formate framework of [NH4][Zn(HCOO)3]. J. Am. Chem. Soc 132 (2010), pp. 9588–9590. https://pubs.acs.org/doi/10.1021ja104263m.
  • T. Matthew, Ferroelectrics and the curie-weiss law. Eur. J. Phys 21 (2000), pp. 459–464. doi:10.1088/0143-0807/21/5/312.
  • H.T. Nguyen and P.T.B. Thao, Ferroelectric nanocomposites from potassium dihydrogen phosphate with oxidised multi-walled carbon nanotubes: preparation, composition effects, structure, ferroelectricity and electrical properties. Philos. Mag 102 (2022), pp. 2444–2458. doi:10.1080/14786435.2022.2112314.
  • H.T. Nguyen, M.T. Chau, P.T.B. Thao, and L.T. Nhan, Near-electrode effects of ferroelectric nanocomposites filled with pristine and oxidized multiwalled carbon nanotubes at low frequencies. Ferroelectrics 602 (2023), pp. 174–183. doi:10.1080/00150193.2022.2149310.
  • M. Wohlert, T. Benselfelt, L. Wågberg, I. Furó, L.A. Berglund, and J. Wohlert, Cellulose and the role of hydrogen bonds: not in charge of everything. Cellulose 29 (2022), pp. 1–23. doi:10.1007/s10570-021-04325-4.
  • A.Y. Milinskii, S.V. Baryshnikov, and N. Hoai Thuong, Dielectric properties of nanocomposites based on potassium iodate with porous nanocrystalline cellulose. Ferroelectrics 524 (2018), pp. 181–188. doi:10.1080/00150193.2018.1432830.
  • A.L. Pirozerskiĭ, E.V. Charnaya, and C. Tien, Influence of the geometry of a porous network on the phase transition in a ferroelectric embedded in a porous matrix. Phys. Solid State 49 (2007), pp. 339–342. doi:10.1134/S1063783407020254.
  • N.M. Galiyarova, Critical slowing down of relaxing domain walls and interfaces in phase transition vicinities. Ferroelectrics 170 (1995), pp. 111–121. doi:10.1080/00150199508014197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.